
The maximum entropy principle hydrodynamical model for holes in silicon semiconductors:

the case of the warped bands

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 215103

(http://iopscience.iop.org/1751-8121/41/21/215103)

Download details:

IP Address: 171.66.16.148

The article was downloaded on 03/06/2010 at 06:49

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/21
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 215103 (30pp) doi:10.1088/1751-8113/41/21/215103

The maximum entropy principle hydrodynamical
model for holes in silicon semiconductors: the case of
the warped bands

Salvatore La Rosa and Vittorio Romano

Dipartimento di Matematica e Informatica, Universitá di Catania, viale A Doria 6, 95125 Catania,
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Abstract
The maximum entropy principle is used to get a consistent hydrodynamical
model for the transport of holes in semiconductors. Heavy, light and split-
off valence bands are considered. The first two are described by the warped
functions while for the split-off band a parabolic approximation is used. Intra-
and inter-band scatterings of holes with non-polar optical phonons, acoustic
phonons and impurities are taken into account along with the generation-
recombination mechanism. Limiting energy-transport and drift-diffusion
models are deduced and simulations in bulk silicon are performed.

PACS number: 72.20.−i

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Holes give a relevant contribution to the charge transport properties in a great variety of
different semiconductor materials and devices: silicon p-channel field-effect transistors,
bipolar transistors, heterostructures bipolar transistors, compound semiconductor p-channel
field-effect transistors and optoelectronic devices as lasers and light emitting diodes.

Although modern computers operate at continuously increasing CPU speed, the direct
integration of the system of semiclassical Boltzmann transport equations for electrons and holes
is a daunting computational task. For this reason, many authors have developed macroscopic
models, for example, see [1–12] and references therein. The main problem related to these
models is that of the closure since the number of unknown functions exceeds that of the
balance equations. The hydrodynamical models, usually employed in applications, are based
on heuristic arguments and ad hoc relations, containing free adjustable parameters, without
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any mathematical or physical justification in the framework of a consistent non-equilibrium
thermodynamical theory.

In industrial applications the simulation of hole transport, in bipolar devices, is usually
obtained by integrating the drift-diffusion model [13, 14], which is based on the assumption of
isothermal charge flow. This is well justified in devices such as MOSFETs (metal oxide field
effect transistors) since the contribution of holes to the total current is marginal. However in
devices as bipolar heterojunctions the role of holes in charge transport is of the same order or
even greater than that of electrons. In such situations more sophisticated models are needed.

In this paper, we present a hydrodynamical model of hole transport in silicon
semiconductors based on the maximum entropy principle (hereafter MEP) following the
same approach presented in [6, 15–17] for electrons.

A similar approach has already been used in [18] adopting the simplified model with only
a single parabolic band. Here both heavy and light holes are considered along with the split-
off band. Intra- and inter-band transitions are considered including scattering with non-polar
optical phonons, acoustic phonons and impurities. Also the main generation-recombination
mechanisms for silicon are taken into account: the Auger and the Schockley–Read–Hall
effects in their relaxation approximations [19, 20].

Due to the anisotropy of the bands the determination of the constitutive equations is
rather involved and suitable expansions must be introduced to make the problem analytically
tractable as already well known in other previous approaches [21, 22].

The plan of the paper is as follows. First, in section 2 we recall the main concepts
regarding the energy band structure and hole transport. Then we present the macroscopic
balance equations in section 3 and use the MEP in sections 4 and 5 to obtain the closure
relations for fluxes (section 6) and production terms (section 7). In section 8, limiting energy-
transport and drift-diffusion models are recovered under suitable scaling assumptions. In the
last section simulations in homogenous silicon are presented.

2. The kinetic semiclassical model

The hole energy spectrum in Si is represented by three bands [23]. A schematic representation
is given in figure 1. The first two bands are the heavy and light valence bands which are
degenerate at k = 0, where they reach their maximum. The third one is the so-called split-off
band which is separated from the first two by the spin–orbit energy � = 0.0443 eV at k = 0.
Because of its low density of states and its energy separation the split-off valence band is
usually neglected.

In [18] a simplified model has been used: a single spherical parabolic band, that of the
heavy holes, with an effective mass related to some plausible average in the k space. Here a
more refined approach is followed: all the three valence bands are included.

The energy bands of heavy and light holes are analytically approximated with warped
bands

EH (k) = h̄2

2me

{
Ak2 ∓ [

B2k4 + C2
(
k2
xk

2
y + k2

yk
2
z + k2

z k
2
x

)]1/2}
, H = +,−, (1)

where + and − stand for the light and heavy hole bands respectively. kx, ky, kz are the
component of k with respect to the principal crystallographic axes. k varies over R

3. The
parameters A,B and C depend on the specific material. The constant energy surfaces have a
warped form (see figure 2).

The (microscopic) hole velocity v in the heavy and light warped bands is obtained with
the quantum mechanics formula vi = 1

h̄
∇E and reads
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Γ ≡ (0,0,0) X ≡ (1,0,0) 

Conduction bands 

Valence bands 

Forbidden region energy gap 

∆ direction 

Figure 1. A schematic representation of the energy conduction and valence bands (E(k) versus
k in arbitrary units) in Si. The conduction bands for holes are obtained from those of valence by
reversing the sign.
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Figure 2. Constant energy surface of the warped bands at kz = 0.
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where k⊥ is the component of k orthogonal to the ith crystallographic axis.
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The split-off hole band is described by the parabolic approximation

E = h̄2 |k|2
2m∗

H

, vi = 1

h̄
∇E = h̄ki

m∗
H

with m∗
H being the effective mass.

From a formal point of view the parabolic band is recovered from the warped one by
setting A = 1, B = C = 0 and replacing me with m∗

H .
Simple properties, useful in the sequel, are the following.

Proposition 1. The warped energy bands have the same (discrete) symmetries of the cube, in
particular the permutation of axes.

The semiclassical description of hole transport in semiconductors consists of a transport
equation for each band coupled to the Poisson equation for the electric potential

∂fH

∂t
+ vi(k)

∂fH

∂xi
+

eEi

h̄

∂fH

∂ki
= C[fH , fG] + I[fH , fA], (2)

Ei = − ∂φ

∂xi

, (3)

ε�φ = −e(ND − NA − n + p), (4)

where ε is the dielectric constant, n, p,ND,NA are the electron, hole, acceptor and donor
densities respectively. e is the absolute value of the elementary charge. The indexes H and
G can be + (light holes), − (heavy holes) or SO (split-off band). The model is completed
by adding the transport equations for electrons in the conduction bands which are coupled
to those for holes through the recombination-generation terms I[fH , fA], where the index A

runs over the considered electron bands or valleys.
C[fH , fG] comprises intra- and inter-band acoustic, non-polar optical and impurity

scatterings in an additive way. In the linear approximation each of them is written as

C[fH , fG] =
∫

dk′
G[P(k′

G, kH)f ′
G − P(kH, k′

G)fH ]

with P(kH, k′
G) being the transition rate from the state with wave vector kH to the state with

wave vector k′
G. This latter belongs to another band in the case of inter-band collision.

In the sequel we will make use of the detailed balance principle which both for intra-band
and inter-band transition reads

P(k′
G, kH) = exp

[
− (EH − E ′

G) + �HG

kBTL

]
P(kH, k′

G), (5)

where �HG is the difference between the bottom of the energy bands. �HG is zero for
intra-band transition and for inter-band transition between light and heavy holes.

In detail the scattering mechanisms are taken to have the following scattering rates
[24, 25]. All the physical parameters are summarized in table 1.

• intra-band non-polar optical phonon scattering

P(k, k′) = Kop

[
Nop

Nop + 1

]
δ[Ec(k′) − Ec(k) ∓ h̄ωop],

where δ is Dirac’s delta, Kop = (DtK)2

8π2ρωop
is a coupling constant and Nop is the optical

phonon distribution at equilibrium

Nop = 1

exp(h̄ωop/kBTL) − 1
, (6)
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Table 1. Values of the physical parameters used for silicon. The values have been taken according
to [26].

me Electron rest mass 9.1095 × 10−28 g
q Absolute electric charge 1.602 177 33−19 C
m∗

H Split-off band mass 0.57 me

TL Lattice temperature 300◦ K
ρ Silicon density 2.33 g cm −3

vs Longitudinal sound speed 9.18 × 105 cm s −1

h̄ωop Non-polar optical phonon energy 0.0612 eV
εr Relative dielectric constant 11.7
ε0 Vacuum dieletric constant 8.85 × 10−18 C V −1µ m −1

ε Absolute dielectric constant εr ε0

A Band parameter 4.22
B Band parameter 0.78
C Band parameter 4.8

• intra-band acoustic phonon scattering

P(k, k′) = Kacq

[
Nq

Nq + 1

]
1

4
(1 + 3(n · n′)2)δ(Ec(k′) − Ec(k) ∓ h̄qvs),

where the acoustic phonon wave vector is approximated by [25]

q =
√

2k
√

1 − n · n′,

Kac = 	2
d

8π2ρvs
, with n = k/k, n′ = k′/k′, vs is the longitudinal component of the sound

speed.
• intra-band impurity scattering

P(k, k′) = Kimp
1 + 3(n · n′)2

(β2 + q2)2
δ(E ′

c − Ec),

where, with the same approximation as for the acoustic phonon,

Kimp = Z2nI e
4

4h̄π2ε2
, q =

√
2k

√
1 − n · n′,

with Z being the impurity atomic number, nI the impurity concentration and β is inverse
Debye length

β =
√

nI e2

εkBTL

.

• inter-band non-polar optical phonon scattering. We will adopt the approximation of
writing this scattering as the intra-band case

• inter-band acoustic phonon scattering. The only difference with respect to the intra-bands
case is the change of the overlap factor

P(kH , k′
G) = Kacq

[
Nq

Nq + 1

]
3(1 − (n · n′)2)

4
δ(Ec(k′

G) − Ec(kH ) ∓ h̄qvs),

with kH and k′
G belonging to the H-band and the G-band respectively.

• inter-band impurity scattering. Also in this case the difference with respect to the intra-
band scatterings is the change of the overlap factor

P(k, k′) = 3Kimp
(1 − (n · n′)2)

(β2 + q2)2
δ(E ′

c − Ec),

5



J. Phys. A: Math. Theor. 41 (2008) 215103 S L Rosa and V Romano

• electron–hole generation recombination. It includes several mechanisms. We will
consider the most important ones for Si that is the Auger and the Schockley–Read–Hall
processes in their relaxation approximations [19]

I[fA, fA] = −�A[nAnAfA − nAni
2MA] − �A[nAnAfA − nAni

2MA]

+
nAfA − ni

2MA

τh(n + ni) + τe(p + ni)
,

where �A are constants, MA the Maxwellians normalized to unit density, τA the carrier
life time and ni the intrinsic concentration. The τA’s will be assumed constant.

Remark. The direct integration of the transport equations requires a huge amount of CPU
time and it is not practical for CAD purposes. Our aim is to develop a macroscopic model
more suited for engineering applications starting form the kinetic approach.

The simple drift-diffusion model is affected by serious drawbacks at submicron scale and
does not contain the energy as dynamical variable. Therefore one looks for hydrodynamical
models. A consistent hydrodynamical model on MEP has been formulated in [18] assuming
a single parabolic band. Here we extend such a model by including the warped effects and all
the three valence bands.

3. Macroscopic balance equations

Starting from the Boltzmann equation (2), it is possible to obtain the macroscopic equations
for the holes multiplying equation (2) by a weight function ψ = ψ(k) and integrating with
respect to k over R

3. If one indicates with fH the hole distribution in one of the bands and
sets

Mψ =
∫

R
3
ψ(k)fH (x, k, t) dk,

which is the moment of fH relative to the weight function ψ(k), the following equation:
∂Mψ

∂t
+
∫

R
3
ψ(k)v · ∇xfH dk +

eE
h̄

·
∫

R
3
ψ(k)∇kfH dk =

∫
R

3
ψ(k)C[fH ] dk (7)

is obtained. Noting that both ψ and v do not depend on the variable x we can write∫
R

3
ψ(k)v · ∇xfH dk = ∇x ·

∫
R

3
ψ(x)vfH dk.

Moreover, applying the Gauss theorem and noting that fH has to rapidly tend to 0 as k tends
to ∞ in order to guarantee the existence of the integrals, we get1

∂Mψ

∂t
+

∂

∂xi

∫
R

3
ψ(k)vifH dk − eEi

h̄

∫
R

3

∂ψ

∂ki
fH dk =

∫
R

3
ψ(k)C[fH ] dk. (8)

First, we set ψ(k) = 1 and get the balance equation for the hole density

∂pH

∂t
+

∂
(
pHV i

H

)
∂xi

= pHCp, (9)

where

pH =
∫

R
3
fH dk is the hole density,

V i
H = 1

pH

∫
R

3
vifH dk is the average hole velocity,

Cp = 1

pH

∫
R

3
C[fH ] dk is the density production.

1 Einstein summation over repeated letters is understood.

6
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As the second weight function we take ψ(k) = h̄ki, i = 1, 2, 3 and after some simple algebra,
we get the average crystal momentum balance equation

∂
(
pHP

j

H

)
∂t

+
∂
(
pHU

ij

H

)
∂xi

− pHeEj = pHC
j

PH
, j = 1, 2, 3, (10)

where

P
j

H = 1

pH

∫
R

3
h̄kjfH dk j = 1, 2, 3 is the average crystal momentum,

U
ij

H = 1

pH

∫
R

3
fH vih̄kj dk is the crystal momentum flux,

C
j

PH
= 1

pH

∫
R

3
h̄kjC[fH ](x, k, t) dk is the average crystal momentum production.

Now if we assume that ψ(k) = E(k), we get the balance equation for the average hole
energy

∂(pHWH )

∂t
+

∂(pHSi
H )

∂xi
− pHeEiV

i
H = pHCWH

, (11)

where

WH = 1

pH

∫
R

3
E(k)fH dk is the average hole energy,

Si
H = 1

pH

∫
R

3
E(k)fH vidk is the energy flux,

CWH
= 1

pH

∫
R

3
E(k)C[fH ](x, k, t) dk is the energy production.

Finally, let us set ψ(k) = E(k)vj , j = 1, 2, 3, obtaining the balance equation for the energy-
flux

∂
(
pHS

j

H

)
∂t

+
∂
(
pHF

ij

H

)
∂xi

− pHeEiG
ji

H = pHC
j

SH
, (12)

where

F
ij

H = 1

pH

∫
R

3
E(k)vivjf dk is the flux of energy flux,

G
ij

H = 1

pH

∫
R

3

1

h̄
fH

∂(Evi)

∂kj
dk,

C
j

SH
= 1

pH

∫
R

3
E(k)vjC[fH ] dk is the flux energy production.

With this choice of the functions ψ(k), our model is given by the following system of balance
equations for each population of holes:

∂pH

∂t
+

∂
(
pHV i

H

)
∂xi

= pHCp, (13)

∂
(
pHP

j

H

)
∂t

+
∂
(
pHU

ij

H

)
∂xj

− pHeEj = pHC
j

PH
, j = 1, 2, 3, (14)

∂pHWH

∂t
+

∂
(
pHSi

H

)
∂xi

− pHeEiV
i
H = pHCWH

, (15)

7
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∂
(
pHS

j

H

)
∂t

+
∂
(
pHF

ij

H

)
∂xi

− pHeEiG
ji

H = pHC
j

SH
j = 1, 2, 3, (16)

where pH , VH ,WH and SH are assumed as fundamental variables since they have a direct
physical meaning. Therefore there is the problem of closing the system (13)–(16) by
expressing the fluxes U

ij

H , F
ij

H ,G
ij

H and the production term Cp,C
j

PH
, CWH

, C
j

SH
as functions

of pH , V i
H ,WH and Si

H .

4. Maximum entropy principle and closure relations

In order to get the closure relations for semiconductor hydrodynamical models, many strategies
have been proposed, often without any consistent mathematical or physical rationale [27]. In
[15–17], the MEP [28–31] has been used to solve the problem of finding self-consistent closure
relations for electron macroscopic balance equations, both for Si and GaAs. Here we employ
MEP to get the required closure relations for the system (13)–(16).

According to this principle, if we have a finite number of known moments for each
band H

MH,α =
∫

R
3
ψαfH dk, H = −, +, SO,

then the distribution function f ME
H , which can be used for an evaluation of the unknown

moments, corresponds to the extremum of the entropy functional, under the restrictions

MH,α =
∫

R
3
ψαf ME

H dk. (17)

The formal setting of the MEP has been developed in the framework of the information theory
by Shannon and applied for the first time to statistical mechanics by Jaynes [28]. He showed
that many questions of classical and quantum mechanics can be reformulated as statistical
inference problems where the MEP distribution represents the least biased distribution with
respect to the only knowledge of a finite number of moments.

In the case of a sufficiently dilute hole gas the entropy functional, according to the classical
limit of the expression arising in the Fermi statistics, is for each population

−kB

∫
R

3
(fH log fH − fH ) dk, (18)

while the total entropy reads

s = −kB

∑
H

∫
R

3
(fH log fH − fH ) dkH . (19)

By introducing the Lagrangian multipliers �H,α , looking for the extremals of the entropy
is equivalent to looking for the extremals without constraints of the following functional:

s ′ =
∑
H,α

�H,α

(∫
R

3
ψH,αfH dk − MH,α

)
− s (20)

which is the Legendre transform of the entropy functional s. From variational calculus,

δs ′ = kB

∑
H

∫
R

3
δfH log fH dk +

∑
H,α

�H,α

∫
R

3
ψH,αδfH dk = 0

for arbitrary δfH . Therefore for each band H,

log fH +
�H,αψH,α

kB

= 0

8
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from which we get the maximum entropy distribution function as

f ME
H = exp

(
−
∑

α

�H,αψH,α

kB

)
. (21)

If we make the choice of the weight functions ψH,α = (1, v, E, Ev) for each band H = +,−,
SO, one has to introduce the Lagrangian multipliers �H = (

λH ,λP
H , λW

H ,λS
H

)
and the

maximum entropy distribution function reads

f ME
H = exp

[
−
(

1

kB

λH + λP
H · v + λW

H E + λS
H · vE

)]
. (22)

In order to complete the program, it is necessary to express the Lagrangian multipliers in
terms of the fundamental variables by evaluating the constraints (17). On account of the high
nonlinearities, we were not able to find out an analytical explicit form of the multipliers, but,
by proceeding as in [15], we expand f ME

H with respect to a parameter of anisotropy δ and solve
the resulting equations at several orders in such a parameter. In particular with the previous
choice of the weights in the moments, one expand f ME

H as

f ME
H = exp

[
−
(

1

kB

λH + λW
H E + δλP

H · v + δλS
H · vE

)]

= exp

(
− 1

kB

λH − λWE
) [

1 − δ
(
λP

H · v + λS
H · vE

)]
+ o(δ). (23)

For the split-off valence band, since a parabolic approximation is used, we are in the same
case considered in [18]. For the other two valence bands, the situation is much more involved.
In the following sections by using the distribution in (23) we will able to obtain up to first
order in δ closure relations for the system (13)–(16) also for light and heavy holes.

5. Determination of the Lagrangian multipliers

The first step in order to get the required closure relations consists of expressing the Lagrangian
multipliers as a function of the moments, that is, with the previous choice of the weights, as
functions of pH , VH ,WH , SH . To this aim, one has to solve the following nonlinear algebraic
system (in this and the following section we will drop the band index for simplifying the
notation):

p =
∫

R
3
f ME dk, (24)

Vi = 1

p

∫
R

3
vif

ME dk, (25)

W = 1

p

∫
R

3
Ef ME dk, (26)

Si = 1

p

∫
R

3
viEf ME dk, (27)

where fME is approximated from now on with (23). By introducing the polar and azimuthal
angles ϑ and ϕ with respect to the main crystallographic axes, the expression of the energy
valence bands can be rewritten as

E(k) = h̄2k2

2me

[A ∓ g(ϑ, ϕ)], (28)

9
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where

g(ϑ, ϕ) =
√

B2 + C2(sin2 ϑ cos2 ϑ + sin4 ϑ cos2 ϕ sin2 ϕ)

and the element of volume dk can be written as

dk =
√

2m
3/2
e

h̄3

√
E [A ∓ g(ϑ, ϕ)]−3/2 dE d�,

with d� = sin ϑ dϑ dϕ being the element of solid angle. Moreover the unit vector n has
components (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ)

In the following we will make also use of the fact that for integral over S2, the unit sphere
of R

3, one has2

∫
S2

li1 · · · lik d� =
⎧⎨
⎩

0 if k is odd
4π

k + 1
δ(i1i2 · · · δik−1ik) if k is even.

(29)

The starting point is the following crucial relation:

Proposition 2. The Lagrangian multiplier relative to the energy up to first order in δ has the
same expression as the parabolic case

λW = 3

2W
.

Proof. According to the representation theorem for tensor-valued isotropic functions, W must
depend on λP and λS only through their modulus. Since the integrals∫

R
3

exp

(
− 1

kB

λ − λWE
)

(λP · v + λS · vE) dk,∫
R

3
E exp

(
− 1

kB

λ − λWE
)

(λP · v + λS · vE) dk

are linear in λP and λS they must vanishes. Therefore the constraint (26) gives

W =
∫

R
3 E exp

(− 1
kB

λ − λWE
)

dk∫
R

3 exp
(− 1

kB
λ − λWE

)
dk

=
∫ +∞

0 E3/2 exp(−λWE) dE∫ +∞
0 E1/2 exp(−λWE) dE

= 3

2λW
,

after we have used the relation valid for any a, ν > 0∫ ∞

0
xν−1 exp(−ax) dx = �(ν)

aν
,

with �(ν) being the special Gamma function, which satisfies for positive integer p,

�

(
p +

1

2

)
=

√
π

2p
(2p − 1)!!

�

Once λW has been explicitly determined, we can evaluate the other constraints. For the
Lagrangian multipliers relative to the density, with consideration similar to that for λW , one
finds

λ = −kB log
h̄3p

2J1π1/2(meW/3)3/2
with J1 =

∫
S2

D−3/2 d�,

2 Round brackets means symmetrization, e.g. Aij = 1
2 (Aij + Aji).

10
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Table 2. Values of the parameters entering in the constitutive relations.

Heavy Light
Parameter holes holes

J1 4.945 21 0.777 36
J2 15.3740 6.859 86
J3 6.593 62 1.036 48
J4 38.4350 23.3588
J5 27.7599 0.190 82
J6 9.253 29 0.063 61
J7 −4.380 55 −0.029 78
J8 16.3034 0.402 86
J9 20.3154 0.418 760
J10 −7.710 68 −0.188 442
J11 38.0139 2.666 28

where

D = A ∓
√

B2 + C2 sin2 ϑ(sin2 ϑ sin2 ϕ cos2 ϕ + cos2 ϑ).

Concerning λP and λS from the representation formulae we have

λV = b11(W)V + b12(W)S (30)

λS = b21(W)V + b22(W)S (31)

Evaluating the constraints (14) and (16) one gets

b11 = −7me

W

J1

J2
, b12 = b21 = 3me

W 2

J1

J2
, b22 = − 9me

5W 3

J1

J2
, (32)

where

J2 =
∫

S2

T 2

D3/2
cos2 ϑd� with

T =
(

2A ∓ 2B2 + C2 sin2 ϑ√
B2 + C2 sin2 ϑ(sin2 ϑ sin2 ϕ cos2 ϕ + cos2 ϑ)

)
1√
D

.

The integrals J1 and J2 do not depend on W . They have been evaluated with standard numerical
methods and their numerical values are reported in table 2. In the parabolic band case we have
evaluated J1 and J2 analytically, obtaining

λ

kB

= − log
h̄3p(

4
3πm∗

HW
)3/2 , λW = 3

2W
,

(33)
λP = −21m∗

H

4W
V +

9m∗
H

4W 2
S, λS = 9m∗

H

4W 2
V − 27m∗

H

20W 3
S

and the distribution function given by the maximum entropy principle becomes

f ME = exp
(− 3

2W
E
)

(
4
3πm∗

HW
)3/2 p

[
1 −

(
−21m∗

H

4W
V +

9m∗
H

4W 2
S
)

· v − E
(

9m∗
H

4W 2
V − 27m∗

H

20W 3
S
)

· v
]

.

(34)

11
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6. Closure relations: fluxes

Since f ME is now explicitly expressed in terms of the moments p, V,W, S, we can evaluated
all the unknown moments present in the system (13)–(16). In this section we will consider
P

j

H and the fluxes Uij , F ij ,Gij . First we observe that, as in the parabolic case,

P
j

H = m∗V j

H , (35)

where m∗ is the holes effective mass whose explicit expression is given by

m∗ = J3

J2
me (36)

with

J3 = 2
∫

S2

T

D2
cos2 ϑd�.

Although the anisotropy of the energy bands, on account of their symmetry, the tensors
Uij , F ij ,Gij are isotropic as stated by the following proposition:

Proposition 3. Up to first order in δ one has

Uij = U(W)δij , F ij = F(W)δij , Gij = G(W)δij ,

where

U(W) = 2

3
W(as in the parabolic case), (37a)

F(W) = 5

6me

J2

J1
W 2, (37b)

G(W) = 1

2me

J4

J1
W (37c)

with

J4 =
∫

S2

[
cos2 ϑ

D3/2

(2A − T
√

D)2 ∓ 4B2√
B2 + C2 sin2 ϑ(sin2 ϑ sin2 ϕ cos2 ϕ + cos2 ϑ)

+
T

D
+

T 2

D3/2
cos2 ϑ

]
d�.

Proof. From the definition

Uij = 1

p

∫
R

3
f MEvih̄kj dk.

Up to first order in δ, by using the ϑ, φ, E coordinates, it is simple matter to show that the
off-diagonal components vanishes while the diagonal terms are given by

U11 = 1

mep

∫
R

3
exp

(
− 1

kB

λ − λWE
)

k2
x

⎡
⎣A ∓ 2k2B2 + C2

(
k2
y + k2

z

)
2
√

B2k4 + C2
(
k2
xk

2
y + kxk2

z + k2
yk

2
z

)
⎤
⎦ dkx dky dkz

U22 = 1

mep

∫
R

3
exp

(
− 1

kB

λ − λWE
)

k2
y

⎡
⎣A ∓ 2k2B2 + C2

(
k2
x + k2

z

)
2
√

B2k4 + C2
(
k2
xk

2
y + kxk2

z + k2
yk

2
z

)
⎤
⎦ dkx dky dkz

U33 = 1

mep

∫
R

3
exp

(
− 1

kB

λ − λWE
)

k2
z

⎡
⎣A ∓ 2k2B2 + C2

(
k2
x + k2

y

)
2
√

B2k4 + C2
(
k2
xk

2
y + kxk2

z + k2
yk

2
z

)
⎤
⎦ dkx dky dkz,

12
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where k is the modulus of k. Since E is invariant with respect to any permutation of the
axes (proposition 1), it follows that U11 = U22 = U33, that is the tensor Uij is isotropic. By
evaluating U33 in the ϑ, ϕ, E coordinates, one has (37a).

With similar argumentations the isotropy of Fij and Gij is obtained along with relations
(37b) and (37c). �

The values of J3 and J4 are reported in table 2. In the parabolic band limit one has

Uij = 2

3
Wδij , m∗

HF ij = 10

9
W 2δij , Gij = 5

3m∗
H

Wδij . (38)

7. Closure relations: production terms

Now we turn our attention to the closure relations of the production terms. Since the various
scattering mechanisms contribute in an additive way, we consider them separately.

7.1. Intra-band non-polar optical phonon–hole scattering

By using the chain of equalities∫
R

3
ψ(k)C[fh](x, k, t) dk =

∫ ∫
R

3×R
3
ψ(k)[P(k′, k)f (k′) − P(k, k′)f (k)] dk′ dk

=
∫ ∫

R
3×R

3
[ψ(k′) − ψ(k)]P(k, k′)f (k) dk′ dk,

we get the following expressions for the production terms:

C(op)
p = 0 (39)

C
i(op)

P = c
(op)

11 V i + c
(op)

12 Si (40)

C
(op)

W = K̃opW−3/2J1[NopB1 − (Nop + 1)B2] (41)

C
i(op)

S = c
(op)

21 V i + c
(op)

22 Si, (42)

where

c
(op)

11 = J3K̃op

2h̄ωop

W−3/2[Nop(−b11B
′
1 + b12B

′′
1 ) + (Nop + 1)(−b11B

′
2 + b12B

′′
2 )],

c
(op)

12 = J3K̃op

2h̄ωop

W−3/2[Nop(−b12B
′
1 + b22B

′′
1 ) + (Nop + 1)(−b12B

′
2 + b22B

′′
2 )]

c
(op)

21 = J2K̃op

2meh̄ωop

W−3/2[Nop(b11B
′′
1 − b12B

′′′
1 ) + (Nop + 1)(b11B

′′
2 − b12B

′′′
2 )],

c
(op)

22 = J2K̃op

2meh̄ωop

W−3/2[Nop(b12B
′′
1 − b22B

′′′
1 ) + (Nop + 1)(b12B

′′
2 − b22B

′′′
2 )].

The coefficients bij are given by (32) for light and heavy holes and by (33) for the holes in the
split-off band. The prime refers to the derivative with respect to λW while

B1(λ
W ) = exp

(
h̄ωop

λW

2

)
h̄ωop

2λW
K1

(
h̄ωop

λW

2

)
, (43)

B2(λ
W ) = exp(−h̄ωopλW)B1(λ

W ), (44)

13
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with � being the Gamma function, K1 the modified Bessel function of second kind of index
1 and

K̃op = 3(me)
3/2ωop

√
3/π

h̄2 Kop.

We recall that for the computation of the derivatives of B1 and B2 the recurrence formulae

K ′
n(z) = n

z
Kn(z) − Kn+1(z), K ′

n(z) = −n

z
Kn − Kn−1(z)

can be used.
In the parabolic case one has

C(op)
p = 0, (45)

C
i(op)

P = c
(op)

11 V i + c
(op)

12 Si, (46)

C
(op)

W = 3
2h̄ωopK̂opW−3/2[NopB1 − (Nop + 1)B2] (47)

C
i(op)

S = c
(op)

21 V i + c
(op)

22 Si, (48)

where

c
(op)

11 = K̂opW−3/2[Nop(−b11B
′
1 + b12B

′′
1 ) + (Nop + 1)(−b11B

′
2 + b12B

′′
2 )],

c
(op)

12 = K̂opW−3/2[Nop(−b12B
′
1 + b22B

′′
1 ) + (Nop + 1)(−b12B

′
2 + b22B

′′
2 )]

c
(op)

21 = K̂op

m∗
H

W−3/2[Nop(b11B
′′
1 − b12B

′′′
1 ) + (Nop + 1)(b11B

′′
2 − b12B

′′′
2 )],

c
(op)

22 = K̂op

m∗
H

W−3/2[Nop(b12B
′′
1 − b22B

′′′
1 ) + (Nop + 1)(b12B

′′
2 − b22B

′′′
2 )].

with K̂op = 8(m∗
H )3/2

√
3π

h̄3 Kop.

7.2. Intra-band acoustic phonon–hole scattering

First of all we observe that by using the principle of detailed balance (5), the moment of the
collision term with respect to the weight function ψ(k) can be written as

Mψ =
∫

R
3×R

3
ψ(k)[P(k′, k)f (k′) − P(k, k′)f (k)] dk′ dk

=
∫

R
3×R

3
ψ(k)P (k, k′)[f (k′)e

E ′−E
kB TL − f (k)] dk′ dk

= 1

4
Kacq

{∫
R

3×R
3
Nq(1 + 3 cos2 ϑ)δ(E ′ − E − h̄ωq)

[
f (k′) e

E ′−E
kB TL − f (k)

]
ψ(k) dk′ dk

+
∫

R
3×R

3
(Nq + 1)(1 + 3 cos2 ϑ)δ(E ′ − E + h̄ωq)

[
f (k′) e

E ′−E
kB TL − f (k)

]
ψ(k) dk′ dk

}
.

(49)

By expanding Nq in Laurent’s series with respect to h̄ωq/kBTL

Nq 	 kBTL

h̄ωq

− 1

2
+

1

12

h̄ωq

kBTL

+ o

(
h̄ωq

kBTL

)
,

and by taking into account that the phonon energy can be expressed as

h̄ωq = 2vs

√
meE
D

(1 − n · n′),

14
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after a lengthy calculation one gets the following contribution to the production terms due to

the acoustic phonon scattering up to first order in
√

mev2
s

/
kBTL:

C(ac)
p = 0, (50)

C
i(ac)
P = c

(ac)
11 V i + c

(ac)
12 Si, (51)

C
(ac)
W = −8mev

2
s

J5

J1
K′

acW
1/2

(
W − 3

2
kBTL

)
, (52)

C
i(ac)
S = c

(ac)
21 V i + c

(ac)
22 Si, (53)

where

c
(ac)
11 = 27

16J2
K′

acW
−3/2

{
128m2

ev
2
s

81kBTL

(J6 − J7)W
3

+

(
64m2

ev
2
s J6

27
− 256m2

ev
2
s J7

27
− 64mekBTLJ8

27

)
W 2

+
8m2

ev
2
s kBTL

3
(8J7 + J6)W

}
,

c
(ac)
12 = 27

16J2
K′

acW
−3/2

{
128m2

ev
2
s

45kBTL

(J7 − J6)W
2

−
(

64m2
ev

2
s J6

45
− 256m2

ev
2
s J7

45
− 64mekBTLJ8

45

)
W

− 8m2
ev

2
s kBTL

15
(8J7 + J6)

}
,

c
(ac)
21 = 27

16J2
K′

acW
−3/2

{
1024mev

2
s

81kBTL

(J9 − J10)W
4

+

(
256mev

2
s J10

9
− 128mev

2
s J9

27
+

128kBTLJ11

27

)
W 3

+
32mev

2
s kBTL

9

(
8J10 +

J9

3

)
W 2

}
,

c
(ac)
22 = 27

16J2
K′

acW
−3/2

{
1024mev

2
s

81kBTL

(J10 − J9)W
3

+

(−256mev
2
s J10

5
+

128mev
2
s J9

15
− 128kBTLJ11

15

)
W 2

+
32mev

2
s kBTL

15

(
8J10 +

J9

3

)
W

}
,

with

K′
ac = 4

√
3m

3/2
e

9π1/2h̄4vs

Kac. (54)

J5, J6, J7, J8, J9, J10, J11 are defined in the appendix. Their numerical values are reported in
table 2.

In the parabolic case one finds

C(ac)
p = 0 (55)

15
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C
i(ac)
P = c

(ac)
11 V i + c

(ac)
12 Si (56)

C
(ac)
W = −64m∗

H v2
sK′

acW
1/2

(
W − 3

2
kBTL

)
(57)

C
i(ac)
S = c

(ac)
21 V i + c

(ac)
22 Si, (58)

where

c
(ac)
11 = K̂acW

1/2

{
b11

[
16kBTL/λW + m∗

Hv2
s

(
164

15
kBTL − 688

15
λ−1

W +
352

15
λ−2

W

/
kBTL

)]

+ b12λ
−1
W

[
48kBTL/λW + m∗

Hv2
s

(
328

15
kBTL − 688

5
λ−1

W +
1408

15
λ−2

W

/
kBTL

)]}
,

c
(ac)
12 = K̂acW

1/2

{
b12

[
16kBTL/λW + m∗

Hv2
s

(
164

15
kBTL − 688

15
λ−1

W +
352

15
λ−2

W

/
kBTL

)]

+ b22λ
−1
W

[
48kBTL/λW + m∗

Hv2
s

(
328

15
kBTL − 688

5
λ−1

W +
1408

15
λ−2

W

/
kBTL

)]}
,

c
(ac)
21 = 2

3m∗
H

K̂acW
3/2

{
b11

[
48kBTL/λW + m∗

Hv2
s

(
408

5
kBTL − 912

5
λ−1

W +
1408

15
λ−2

W

/
kBTL

)]

+ b12λ
−1
W

[
192kBTL/λW + m∗

Hv2
s

(
1224

5
kBTL − 3648

5
λ−1

W +
1408

3
λ−2

W

/
kBTL

)]}
,

c
(ac)
22 = 2

3m∗
H

K̂acW
3/2

{
b12

[
48kBTL/λW + m∗

Hv2
s

(
408

5
kBTL − 912

5
λ−1

W +
1408

15
λ−2

W

/
kBTL

)]

+ b22λ
−1
W

[
192kBTL/λW + m∗

Hv2
s

(
1224

5
kBTL − 3648

5
λ−1

W +
1408

3
λ−2

W

/
kBTL

)]}
.

with

K̂ac = 4
√

3πm
∗3/2
H

9h̄4vs

Kac.

In figures 3 and 4 the coefficients cij’s and the energy relaxation time are plotted.

7.3. Intraband scattering with impurities

In the case of heavy and light holes the contribution to the production term due to the impurities
is given by

C(imp)
p = 0 (59)

C
i(imp)

P = c
(imp)

11 V i + c
(imp)

12 Si (60)

C
(imp)

W = 0 (61)

C
i(imp)

S = c
(imp)

21 V i + c
(imp)

22 Si, (62)

where (
c
(imp)

11 c
(imp)

12

c
(imp)

21 c
(imp)

22

)
=
(

q11 q12

q21 q22

)(
b11 b12

b12 b22

)

16
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with

q11 = 2meK̃imp

J1
W−3/2

∫
[0,∞]×S2×S ′2

α1(E, n, n′) e−λW E dE d� d�′,

q12 = 2meK̃imp

J1
W−3/2

∫
[0,∞]×S2×S ′2

α1(E, n, n′)E e−λW E dE,

q21 = K̃imp

J1
W−3/2

∫
[0,∞]×S2×S ′2

α2(E, n, n′) e−λW E dE d� d�′,

q22 = K̃imp

J1
W−3/2

∫
[0,∞]×S2×S ′2

α2(E, n, n′)E e−λW E dE d� d�′,

α1(E, n, n′) = E2 1 + 3(n · n′)2(
β2 + 4meE(1−n · n′)

h̄2D(ϑ,ϕ)

)2 [T (ϑ, ϕ) cos ϑ − T (ϑ ′, ϕ′) cos ϑ ′]

×D−5/2(ϑ, ϕ)D−3/2(ϑ ′, ϕ′) cos ϑ,

α2(E, n, n′) = E3 1 + 3(n · n′)2(
β2 + 4meE(1−n · n′)

h̄2D(ϑ,ϕ)

)2 [T (ϑ, ϕ) cos ϑ − T (ϑ ′, ϕ′) cos ϑ ′]

×D−3/2(ϑ, ϕ)D−3/2(ϑ ′, ϕ′)T (ϑ, ϕ) cos ϑ,

K̃imp = 3

2h̄3

√
3me

π
Kimp. (63)

The integrals appearing in the coefficients qij can be evaluated by using Gaussian quadrature
formulae with respect to energy and iterated standard formulae for simple integral, e.g. Simpson
rule.

In the parabolic case one has

C(imp)
p = 0 (64)

C
i(imp)

P = c
(imp)

11 V i + c
(imp)

12 Si (65)

C
(imp)

W = 0 (66)

C
i(imp)

S = c
(imp)

21 V i + c
(imp)

22 Si, (67)

where (
c
(imp)

11 c
(imp)

12

c
(imp)

21 c
(imp)

22

)
=
(

q11 q12

q21 q22

)(
b11 b12

b12 b22

)

with

q11 = K̂impW
−3/2

∫ ∞

0
�(E) e−λW E dE,

q12 = K̂impW
−3/2

∫ ∞

0
�(E)E e−λW E dE,

q21 = q12/m∗
H ,

q22 = K̂impW
−3/2

∫ ∞

0
�(E)E2 e−λW E dE,

�(E) = log(1 + 8aE)
64a2E2 + 48aE + 9

256a2E2
− 160a2E2 + 84aE + 9

32aE(1 + 8aE)
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K̂imp =
√

3nIZ
2e4

π3/2
√

m∗
Hε2

, a = m∗
H

h̄2β2
.

7.4. Inter-band non-polar optical phonon–hole scattering

For the holes in the A-band (A = +, −) we get the following expressions for the production
terms by taking into account the inter-band scatterings with the holes in the B-band
(B = −, +),

C(op)
p = K̃op

h̄ωop

(γ1B + γ1A) (68)

C
i(op)

P = c
(op)

11 V i
A + c

(op)

12 Si
A (69)

C
(op)

W = K̃op

h̄ωop

(γ2B + γ2A) (70)

C
i(op)

S = c
(op)

21 V i
A + c

(op)

22 Si
A, (71)

where

γ1B = JA
1 W

−3/2
B

pB

pA

BB
1

{
Nop exp

[
−h̄ωop

(
λW

B − 1

kBTL

)]
+ (Nop + 1) exp

(
− h̄ωop

kBTL

)}
,

γ1A = −JB
1 W

−3/2
A BA

1

[
Nop + (Nop + 1) exp

(−h̄ωopλW
A

)]
,

γ2B = −JA
1 W

−3/2
B

pB

pA

{
Nop exp

[
−h̄ωop

(
λW

B − 1

kBTL

)] (
BB

1

)′
+ (Nop + 1) exp

[
h̄ωop

(
λW

B − 1

kBTL

)] (
BB

2

)′}
γ2A = JB

1 W
−3/2
A

[
Nop

(
BA

1

)′
+ (Nop + 1)

(
BA

2

)′)]
,

c
(op)

11 = JA
3 JB

1 K̃op

2JA
1 h̄ωop

W
−3/2
A

[
Nop

(−bA
11

(
BA

1

)′
+ bA

12

(
BA

1

)′′)
+ (Nop + 1)

(−bA
11

(
BA

2

)′
+ bA

12

(
BA

2

)′′)]
,

c
(op)

12 = JA
3 JB

1 K̃op

2JA
1 h̄ωop

W
−3/2
A

[
Nop

(−bA
12

(
BA

1

)′
+ bA

22

(
BA

1

)′′)
+ (Nop + 1)

(−bA
12(B

A
2 )′ + bA

22(B
A
2 )′′

)]
,

c
(op)

21 = JA
2 JB

1 K̃op

2JA
1 meh̄ωop

W
−3/2
A

[
Nop

(
bA

11

(
BA

1

)′′ − bA
12

(
BA

1

)′′′)
+ (Nop + 1)

(
bA

11

(
BA

2

)′′− bA
12

(
BA

2

)′′′)]
,

c
(op)

22 = JA
2 JB

1 K̃op

2JA
1 meh̄ωop

W
−3/2
A

[
Nop

(
bA

12

(
BA

1

)′′ − bA
22

(
BA

1

)′′′)
+ (Nop + 1)

(
bA

12

(
BA

2

)′′− bA
22

(
BA

2

)′′′)]
.

Here BA
i and BB

i are the functions appearing in (43), (44) with the energy Lagrangian multiplier
λW equals to λW

A = 3
2WA

and λW
B = 3

2WB
respectively. Moreover bA

ij are the functions bij

appearing in (30), (31) relative to the A-band.

7.5. Inter-band acoustic phonon–hole scattering

One gets the following contribution to the production terms due to the acoustic phonon

scattering up to first order in
√

mev2
s

/
kBTL with a meaning of the symbols similar to that of

the previous subsection:

C(ac)
p = 3

2K
′
ac(ζ1A + ζ1B) (72)
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C
i(ac)
P = c

(ac)
11AV i

A + c
(ac)
12ASi

A + c
(ac)
11BV i

B + c
(ac)
12BSi

B (73)

C
(ac)
W = 3

2K
′
ac(ζ2A + ζ2B) (74)

C
i(ac)
S = c

(ac)
21AV i

A + c
(ac)
22ASi

A + c
(ac)
21BV i

B + c
(ac)
22BSi

B, (75)

where

ζ1B = pB

pAJB
1

kBTLI1W
1/2
B ,

ζ1A = − 1

JA
1

kBTLI1W
1/2
A ,

ζ2B = pB

pAJB
1

[
64mev

2
s I3

81kBTL

W
5/2
B −

(
160

27
mev

2
s I3 − 32

27
kBTLI1

)
W

3/2
B +

20

3
mev

2
s I3kBTLW

1/2
B

]
,

ζ2A = 1

JA
1

[
−64mev

2
s I3

81kBTL

W
5/2
A +

(
32

27
mev

2
s I3 − 32

27
kBTLI1

)
W

3/2
A +

4

9
mev

2
s I3kBTLW

1/2
A

]
,

c
(ac)
11A = 27

16JA
2

K′
acW

−3/2
A

{
128m2

ev
2
s

81kBTL

I4W
3
A +

(
64m2

ev
2
s I4

27
− 64mekBTLI5

27

)
W 2

A

+
8m2

ev
2
s kBTL

3
I4WA

}
,

c
(ac)
11B = 27pB

16pAJB
2

K′
acW

−3/2
B

{
−128m2

ev
2
s

81kBTL

I6W
3
B− 256m2

ev
2
s

27
I6W

2
B +

64m2
ev

2
s kBTL

3
I6

)
WB

}
,

c
(ac)
12A = 27

16JA
2

K′
acW

−3/2
A

{
−128m2

ev
2
s

45kBTL

I4W
2
A +

(
64m2

ev
2
s I4

45
− 64mekBTLI5

45

)
WA

− 8m2
ev

2
s kBTL

15
I4

}
,

c
(ac)
12B = 27pB

16pAJB
2

K′
acW

−3/2
B

{
128m2

ev
2
s

45kBTL

I6W
2
B − 256m2

ev
2
s

45
I6WB − 64m2

ev
2
s kBTL

15
I6

}
,

c
(ac)
21A = 27

16JA
2

K′
acW

−3/2
A

{
1024mev

2
s

81kBTL

I7W
4
A +

(
−128mev

2
s I7

27
+

128kBTLI8

27

)
W 3

A

+
32mev

2
s kBTL

27
I7W

2
A

}
,

c
(ac)
21B = 27pB

16pAJB
2

K′
acW

−3/2
B

{
−1024mev

2
s

81kBTL

I2W
4
B +

256mev
2
s

9
I2W

3
B +

256mev
2
s kBTL

9
I2W

2
B

}
,

c
(ac)
22A = 27

16JA
2

K′
acW

−3/2
A

{
−1024mev

2
s

81kBTL

I7W
3
A +

(
128mev

2
s

15
I7 − 128kBTL

15
I8

)
W 2

A

+
32mev

2
s kBTL

45
I7WA

}
,

c
(ac)
22B = 27pB

16pAJB
2

K′
acW

−3/2
B

{
1024mev

2
s

81kBTL

I2W
3
B − 256mev

2
s

5
I2W

2
B +

256mev
2
s kBTL

15
I2WB

}
.

The integrals Ij are defined in the appendix where their numerical values are also reported.
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7.6. Inter-band scattering with impurities

The contribution to the production terms due to the inter-band scattering with impurities is
given by

C(imp)
p = 2meK̃imp

(
r1BW

−3/2
B + r1AW

−3/2
A

)
(76)

C
i(imp)

P = (
c
(imp)

11A V i
A + c

(imp)

12A Si
A

)
W

−3/2
A +

(
c
(imp)

11B V i
B + c

(imp)

12B Si
B

)
W

−3/2
B (77)

C
(imp)

W = 2meK̃imp(r2BW
−3/2
B + r2AW

−3/2
A ) (78)

C
i(imp)

S = (
c
(imp)

21A V i
A + c

(imp)

22A Si
A

)
W

−3/2
A +

(
c
(imp)

21B V i
B + c

(imp)

22B Si
B

)
W

−3/2
B , (79)

where for X = A,B(
c
(imp)

11X c
(imp)

12X

c
(imp)

21X c
(imp)

22X

)
=
(

q11X q12X

q21X q22X

)(
b11X b12X

b12X b22X

)

r1B = pB

pAJB
1

∫
[0,∞]×S2×S ′2

EAα3(EA, nA, nB
′) e−λB

W EA dEA d�A d�′
B,

r1A = − 1

JA
1

∫
[0,∞]×S2×S ′2

EAα3(EA, nA, nB
′) e−λA

W EA dEA d�A d�′
B,

r2B = pB

pAJB
1

∫
[0,∞]×S2×S ′2

EA2α3(EA, nA, nB
′) e−λB

W EA dEA d�A d�′
B,

r2A = − 1

JA
1

∫
[0,∞]×S2×S ′2

EA2α3(EA, nA, nB
′) e−λA

W EA dEA d�A d�′
B,

q11A = 2meK̃imp

JA
1

∫
[0,∞]×S2×S ′2

α1A(EA, nA, nB
′) e−λA

W EA dEA d�A d�′
B,

q11B = 2meK̃imp

JB
1

pB

pA

∫
[0,∞]×S2×S ′2

α1B(EA, nA, nB
′) e−λB

W EA dEA d�A d�′
B,

q12A = 2meK̃imp

JA
1

∫
[0,∞]×S2×S ′2

EAα1A(EA, nA, nB
′) e−λA

W EA dEA d�A d�′
B,

q12B = 2meK̃imp

JB
1

pA

pB

∫
[0,∞]×S2×S ′2

EAα1B(EA, nA, nB
′) e−λA

W EA dEA d�A d�′
B,

q21A = K̃imp

JA
1

∫
[0,∞]×S2×S ′2

α2A(EA, nA, nB
′) e−λA

W EA dEA d�A d�′
B,

q21B = K̃imp

JB
1

pB

pA

∫
[0,∞]×S2×S ′2

α2B(EA, nA, nB
′) e−λB

W EA dEA d�A d�′
B,

q22A = K̃imp

JA
1

∫
[0,∞]×S2×S ′2

EAα2A(EA, nA, nB
′) e−λA

W EA dEA d�A d�′
B,

q22B = K̃imp

JB
1

pB

pA

∫
[0,∞]×S2×S ′2

EAα2B(EA, nA, nB
′) e−λB

W EA dEA d�A d�′
B.

α1A(EA, nA, nB
′) = EA2 3 − 3(nA · nB

′)2(
β2 + 4meEA(1−nA · nB

′)
h̄2DA(ϑA,ϕA)

)2 TA(ϑA, ϕA)D
−5/2
A (ϑA, ϕA)

× D
−3/2
B (ϑ ′

B, ϕ′
B) cos2 ϑA,
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α1B(EA, nA, nB
′) = −EA2 3 − 3(nA · nB

′)2(
β2 + 4meEA(1−nA · nB

′)
h̄2DA(ϑA,ϕA)

)2 TB(ϑ ′
B, ϕ′

B)D
−5/2
A (ϑA, ϕA)

× D
−3/2
B (ϑ ′

B, ϕ′
B) cos ϑA cos ϑ ′

B,

α2A(EA, nA, nB
′) = EA3 3 − 3(nA · nB

′)2(
β2 + 4meEA(1−nA · nB

′)
h̄2DA(ϑA,ϕA)

)2 T 2
A(ϑA, ϕA)D

−3/2
A (ϑA, ϕA)

× D
−3/2
B (ϑ ′

B, ϕ′
B) cos2 ϑA,

α2B(EA, nA, nB
′) = −EA3 3 − 3(nA · nB

′)2(
β2 + 4meEA(1−nA · nB

′)
h̄2DA(ϑA,ϕA)

)2 TA(ϑA, ϕA)TB(ϑ ′
B, ϕ′

B)

× D
−3/2
A (ϑA, ϕA)D

−3/2
B (ϑ ′

B, ϕ′
B) cos ϑA cos ϑ ′

B,

α3(EA, nA, nB
′) = 3 − 3(nA · nB

′)2(
β2 + 4meEA(1−nA · nB

′)
h̄2DA(ϑA,ϕA)

)2 D
−3/2
A (ϑA, ϕA)D

−3/2
B (ϑ ′

B, ϕ′
B).

7.7. Generation-recombination terms

Here only the productions for holes are written. Of course similar terms must be also considered
for electrons. However the latter ones can be easily obtained with a similar procedure.

At variance with the other scatterings, the density of each population of holes is no longer
conserved, but we have

C(GR)
p = −�H

(
p2n − pn2

i

)− �A

(
n2p − nn2

i

)
+

np − n2
i

τh(n + ni) + τe(p + ni)
. (80)

For the other production terms, one finds

C
i(GR)
P = −�H p2nP i

H − �An2pP i
e +

npP i
H

τh(n + ni) + τe(p + ni)
(81)

C
(GR)
W = −�H

(
p2nW − pn2

i W0
)− �A

(
n2pWe − nn2

i W0
)

+
npW − n2

i W0

τh(n + ni) + τe(p + ni)
(82)

C
i(GR)
S = −�H p2nSi

H − �An2pSi
e +

npSi
H

τh(n + ni) + τe(p + ni)
, (83)

where We is the electron energy, P i
e is the electron average crystal momentum, Si

e is the
electron energy flux and W0 = 3

2kBTL is the crystal energy.

8. Energy-transport and drift-diffusion limit models

Macroscopic models, simpler than the hydrodynamical ones but widely used in simulations,
are represented by the so-called energy transport models, which are constituted by two balance
equations: one for the density and the other for the energy. Starting from the energy-transport
model in the isothermal limit one recovers the drift-diffusion models and an expression of the
hole mobility based on MEP.

In principle on account of the coupling between electron and holes by means of
the generation-recombination terms, the energy-transport model should comprise also the
analogous equations for the electrons. However the typical time for the recombination
generation interaction is much longer (about a nanosecond) than those of the hole–phonon
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Figure 3. Coefficients cij versus energy for heavy (continuous line) and light (dashed line) warped
bands and for the parabolic band (dashed-dot line) in the intra-band case, neglecting scattering
with impurities.

scattering (a fraction of picosecond). Therefore in situation where the characteristic time is
of few picoseconds, e.g. simulation of MOSFETs, the generation-recombination terms can be
neglected and the constitutive relations for holes and electrons decouple. This approximation
will be assumed in the present section. Moreover for the sake of simplicity we consider only
intra-band scatterings. Inter-band scatterings can be included in a straightforward way.

First we rewrite the hydrodynamical model for holes in the form

∂pH

∂t
+

∂
(
pHV i

H

)
∂xi

= 0, (84)

∂
(
pHP

j

H

)
∂t

+
∂
(
pHU

ij

H

)
∂xj

− epHEj = pH

[
(c11(WH)V i

H + c12(WH)Si
H

]
, (85)
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Figure 4. Energy relaxation time as function of the energy W for heavy (continuous line) and light
(dashed line) warped bands, and the parabolic band (dashed-dot line) as in figure 3.

∂pHWH

∂t
+

∂
(
pHSi

H

)
∂xi

− epHEiV i
H = −pH

WH − W0

τWH

, (86)

∂(pHSj )

∂t
+

∂
(
pHF

ij

H

)
∂xi

− epHEiG
ji

H = pH

[
c21(WH)V i

H + c22(WH )Si
H

]
, (87)

with W0 = 3/2kBTL and with an obvious meaning for τWH
(the energy relaxation time),

c11(WH), c12(WH), c21(WH ), c22(WH).
As in [32] let us assume that the following scaling:

t = O
(

1

δ2

)
, (88a)

τW = O
(

1

δ2

)
, (88b)

xi = O
(

1

δ

)
, (88c)

VH = O(δ), (88d)

SH = O(δ) (88e)

holds.
The first condition is a long-time scaling that is almost stationary regime. The second one

means that the energy relaxation time must be sufficiently long with respect to the typical time
of the transient. (88a) is the typical diffusion scaling, while (88d), (88e) are consistent with
the expansion made to get the closure relations. Under the conditions (88), equating to zero

23



J. Phys. A: Math. Theor. 41 (2008) 215103 S L Rosa and V Romano

at the various order in δ the terms appearing in the balance equations one gets the following
compatibility conditions:

∂pH

∂t
+

∂
(
pHV i

H

)
∂xi

= 0, (89)

∂
(
pHV i

H

)
∂t

= 0,
∂
(
pHSi

H

)
∂t

= 0, (90)

∂
(
pHU

ij

H

)
∂xj

− epHEi − c11pHV i
H − c12pHSi

H = 0, (91)

∂
(
pHWH

)
∂t

+
∂
(
pHSi

H

)
∂xi

− epH EiV i
H + pH

WH − W0

τWH

= 0, (92)

∂
(
pHF

ij

H

)
∂xi

− epHEiG
ij

H − c21pHV i
H − c22pHSi

H = 0. (93)

Equations (91) and (93) are a linear system for VH and SH whose solution is

VH = D11(WH)∇ log pH + D12(WH)∇WH + D13(WH)∇φ, (94)

SH = D21(WH)∇ log pH + D22(WH)∇WH + D23(WH)∇φ. (95)

The elements of the diffusion matrix D = (Dij ) read

D11 =
2
3c22WH − 5J2

6J1
c12

W 2
H

me

c11c22 − c12c21
, D12 =

2
3c22 − 10J2

6J1
c12

WH

me

c11c22 − c12c21
, D13 = e

c22 − J4
2J1

c12
WH

me

c11c22 − c12c21
,

D21 =
5J2
6J1

c11
W 2

H

me
− 2

3c21WH

c11c22 − c12c21
, D22 =

10J2
6J1

c11
WH

me
− 2

3c21

c11c22 − c12c21
, D23 = −e

c21 − J4
2J1

c11
WH

me

c11c22 − c12c21
.

The balance equations for density and energy (89) and (93) closed with the relations (94),
(95) are the energy-transport model for holes based on MEP. From this latter a drift-diffusion
model is obtained as isothermal limit formally setting τWH


→ 0,

JH = pH VH = D11(W0)∇pH + pHD13(W0)∇φ, (96)

∂pH

∂t
+ ∇ · JH = 0. (97)

By comparing (96) with the expression of J in the form

J = −Dp∇pH − µp0pH∇φ,

one can identify the diffusivity coefficient Dp and the low field mobility µp0 as

Dp = −D11(W0), µp0 = −D13(W0). (98)

One observes that

Dp = µp0
2W0

3e
= µp0

kBTL

e
, (99)

which is the Einstein relation.
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9. Simulations in the bulk case

Here we simulate the case of bulk silicon by taking into account heavy and light holes, which
in this section will be denoted by the H and L subscript. The stationary solution is obtained as
asymptotic limit of the time-dependent problem. The only non-trivial contribution is along the
direction of the electric field which enters into the equation as a parameter. In fact the Poisson
equation is solved taking the sum of light and heavy holes equals to the doping concentration
and a linear electrostatic potential.

In the homogeneous case, with obvious meaning of the symbols, the hydrodynamical
model reads

dpH

dt
= pHCHH(WH) + pLCHL(WL) (100)

d(pHm∗
HVH )

dt
− pHeE = pHCPHH

(WH) + pLCPHL
(WL), (101)

d(pHWH )

dt
− pHeEVH = pHCWHH

(WH ) + pLCWHL
(WL), (102)

d(pHSH )

dt
− pHeEGH = pHCSHH

(WH) + pLCSHL
(WL) (103)

dpL

dt
= pLCLL(WL) + pHCLH (WH) (104)

d(pLm∗
LVL)

dt
− pLeE = pLCPLL

(WL) + pHCPLH
(WH), (105)

d(pLWL)

dt
− pLeEVL = pLCWLL

(WL) + pHCWLH
(WH), (106)

d(pLSL)

dt
− pLeEGL = pLCSLL

(WL) + pHCSLH
(WH) (107)

Since the total hole density pH + pL is conserved, the following semi-implicit Euler
numerical scheme is adopted for the system (100)–(107). We remark that a very stringent
stability condition arises if an explicit method is employed, due to the different charge
concentration between the heavy and light holes.

By denoting with the superscript n the quantities evaluated at the time tn and with �t the
time step tn+1 − tn, we first advance in time the density, discretizing the balance equation for
the densities with all variables but pH and pL frozen at the time step tn,

pn+1
H + pn+1

L = pn
H + pn

L (108)

pn+1
H − pn

H = �t
[
pn+1

H CHH

(
Wn

H

)− pn+1
L CHL

(
Wn

L

)]
, (109)

and then the energies at the next time are obtained,

Wn+1
H = pn

H

pn+1
H

Wn
H +

pn+1
L

pn+1
H

CWHL

(
Wn

L

)
�t +

pn
H

pn+1
H

CWHH

(
Wn

H

)
�t + eEV n

H �t, (110)

Wn+1
L = pn

L

pn+1
L

Wn
L +

pn+1
H

pn+1
L

CWLH

(
Wn

H

)
�t +

pn
L

pn+1
L

CWLL

(
Wn

L

)
�t + eEV n

L�t. (111)
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Figure 5. Ratio of the densities versus the electric field.

Once pn+1
H , pn+1

L ,Wn+1
H and Wn+1

L are known, we discretize the equation for the velocity
and energy flux getting two uncoupled linear systems wherefrom one finds

m∗
HV n+1

H = c11HH
V n

H �t + c12HH
Sn

H �t +
pn

H

pn+1
H

m∗
HV n

H + eE�t

+
(
c11HL

V n
L + c12HL

Sn
L

)pn+1
L

pn+1
H

�t (112)

Sn+1
H = c21HH

V n
H�t + c22HH

Sn
H�t +

pn
H

pn+1
H

Sn
H + eEGn+1

H �t

+
(
c21HL

V n
L + c22HL

Sn
L

)pn+1
L

pn+1
H

�t (113)

m∗
LV n+1

L = c11LL
V n

L�t + c12LL
Sn

L�t +
pn

L

pn+1
L
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The band coefficients and the deformation potentials are not given by scattering theory
but they are free parameters also for the kinetic models. Their values are usually fitted
against the experimental data and there are several sets of values available in the literature.
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Figure 6. Velocity of the heavy and light holes as function of the electric field.
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Figure 7. Average velocity as function of the electric field.

We use the physical parameters reported in table 1. Moreover for the heavy holes we take the
same values of the scattering coupling constants as in [18], that is 	d = 5.39 eV and DtK =
13.24 × 108 eV cm−1 according to [26]; instead for the light holes we take DtK = 5 ×
108 eV cm−1 [24] and 	d = 3.1 eV [33].

The stationary solution is reached after about 3 ps. The results are plotted versus the
electric field. As expected from a physical point of view, the heavy band is more populated
than the light one. The ratio of the concentration between the two bands is reported in
figure 5. Similarly, the average velocity of the light holes is much higher than that of the other
band (see figure 6) according to the smaller effective mass. The total momentum density is
given by

J = pHVH + pLVL
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and from this an average overall hole velocity can be defined as

V = J

pH + pL

.

V is plotted against the field in figure 7 and a good high field velocity is obtained. We note
that the V is considerably higher than VH . This means that calculations with the single heavy
band could underestimate the overall hole current.

10. Conclusions

In this paper, we have presented a consistent closure for a hydrodynamical model for the hole
transport in silicon by using the maximum entropy principle by describing the band structure
with the so-called warped approximation. Both heavy and light bands are taken into account.

Under suitable scaling assumptions, we have obtained an explicit analytical expression
for fluxes and production terms. Limiting energy-transport and drift-diffusion models have
been deduced.

Simulations in the bulk homogeneous case are performed.
Applications to relevant bipolar devices are under current investigation by the authors.

Acknowledgments

The author acknowledges the financial support by MIUR (PRIN 2004 Problemi Matematici
delle teorie cinetiche), PRA University of Catania (ex 60 %), CNR (grant no 00.00128.ST74),
the EU Marie Curie RTN project COMSON grant no MRTN-CT-2005-019417.

Appendix A. Numerical coefficients

In this appendix, some numerical coefficients present in the constitutive relation are collected.
The definition of the coefficients Ji are given by

J5 =
∫

S2×S ′2
D−3/2(ϑ ′, ϕ′)(1 + 3(n · n′)2)(1 − n · n′)D−5/2(ϑ, ϕ) d� d�′,

J6 =
∫

S2×S ′2
D−3/2(ϑ ′, ϕ′)(1 + 3(n · n′)2)(1 − n · n′)D−3(ϑ, ϕ)

T (ϑ, ϕ)

2
cos2 ϑd� d�′,

J7 =
∫

S2×S ′2
D−3/2(ϑ ′, ϕ′)(1 + 3(n · n′)2)(1 − n · n′)D−3(ϑ, ϕ)

T (ϑ ′, ϕ′)
2

cos ϑ cos ϑ ′ d� d�′,

J8 =
∫

S2×S ′2
D−3/2(ϑ ′, ϕ′)(1 + 3(n · n′)2)D−2(ϑ, ϕ)

T (ϑ, ϕ)

2
cos2 ϑd� d�′,

J9 =
∫

S2×S ′2
D−3/2(ϑ ′, ϕ′)(1 + 3(n · n′)2)(1 − n · n′)D−5/2(ϑ, ϕ)

T 2(ϑ, ϕ)

4
cos2 ϑd� d�′,

J10 =
∫

S2×S ′2
D−3/2(ϑ ′, ϕ′)(1 + 3(n · n′)2)(1 − n · n′)D−5/2(ϑ, ϕ)

T (ϑ ′, ϕ′)
2

× T (ϑ, ϕ)

2
cos ϑ cos ϑ ′ d� d�′,

J11 =
∫

S2×S ′2
D−3/2(ϑ ′, ϕ′)(1 + 3(n · n′)2)D−3/2(ϑ, ϕ)

T 2(ϑ, ϕ)

4
cos2 ϑd� d�′.

The numerical values are reported in table 2.
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Table 3. Values of the parameters entering in the inter-band acoustic phonon scattering relations.

A = − A = +
Parameter B = + B = −
I1 7.688 41 7.688 41
I2 4.435 48 0.107 800
I3 4.363 69 1.213 93
I4 1.454 56 0.404 642
I5 2.562 74 2.562 74
I6 −0.553 374 −0.042 758
I7 3.193 46 2.663 97
I8 5.975 56 16.9617

The definition of the coefficients Ij are given by

I1 =
∫

S2×S ′2
D

−3/2
B (ϑ ′

B, ϕ′
B)D

−3/2
A (ϑA, ϕA)(3 − 3(nA · nB

′)2) d�A d�′
B,

I2 =
∫

S2×S ′2
D

−3/2
B (ϑ ′

B, ϕ′
B)(3 − 3(nA · nB

′)2)(1 − nA · nB
′)D−5/2

A (ϑA, ϕA)
TA(ϑA, ϕA)

2

×TB(ϑ ′
B, ϕ′

B)

2
cos ϑA cos ϑ ′

B d�A d�′
B,

I3 =
∫

S2×S ′2
D

−3/2
B (ϑ ′

B, ϕ′
B)(3 − 3(nA · nB

′)2)(1 − nA · nB
′)D−5/2

A (ϑA, ϕA) d�A d�′
B,

I4 =
∫

S2×S ′2
D

−3/2
B (ϑ ′

B, ϕ′
B)(3 − 3(nA · nB

′)2)(1 − nA · nB
′)D−3

A (ϑA, ϕA)

× TA(ϑA, ϕA)

2
cos2 ϑA d�A d�′

B,

I5 =
∫

S2×S ′2
D

−3/2
B (ϑ ′

B, ϕ′
B)(3 − 3(nA · nB

′)2)D−2
A (ϑA, ϕA)

TA(ϑA, ϕA)

2
cos2 ϑA d�A d�′

B,

I6 =
∫

S2×S ′2
D

−3/2
B (ϑ ′

B, ϕ′
B)(3 − 3(nA · nB

′)2)(1 − nA · nB
′)D−3

A (ϑA, ϕA)

× TB(ϑ ′
B, ϕ′

B)

2
cos ϑA cos ϑ ′

B d�A d�′
B,

I7 =
∫

S2×S ′2
D

−3/2
B (ϑ ′

B, ϕ′
B)(3 − 3(nA · nB

′)2)(1 − nA · nB
′)D−5/2

A (ϑA, ϕA)

×T 2
A(ϑA, ϕA)

4
cos2 ϑA d�A d�′

B,

I8 =
∫

S2×S ′2
D

−3/2
B (ϑ ′

B, ϕ′
B)(3 − 3(nA · nB

′)2)D
−3/2
A (ϑA, ϕA)

T 2
A(ϑA, ϕA)

4
cos2 ϑA d�A d�′

B.

The numerical values are reported in table 3.
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