The maximum entropy principle hydrodynamical model for holes in silicon semiconductors: the case of the warped bands

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2008 J. Phys. A: Math. Theor. 41215103
(http://iopscience.iop.org/1751-8121/41/21/215103)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.148
The article was downloaded on 03/06/2010 at 06:49

Please note that terms and conditions apply.

The maximum entropy principle hydrodynamical model for holes in silicon semiconductors: the case of the warped bands

Salvatore La Rosa and Vittorio Romano
Dipartimento di Matematica e Informatica, Universitá di Catania, viale A Doria 6, 95125 Catania, Italy

E-mail: larosa@dmi.unict.it and romano@dmi.unict.it
Received 31 October 2007, in final form 2 April 2008
Published 9 May 2008
Online at stacks.iop.org/JPhysA/41/215103

Abstract

The maximum entropy principle is used to get a consistent hydrodynamical model for the transport of holes in semiconductors. Heavy, light and splitoff valence bands are considered. The first two are described by the warped functions while for the split-off band a parabolic approximation is used. Intraand inter-band scatterings of holes with non-polar optical phonons, acoustic phonons and impurities are taken into account along with the generationrecombination mechanism. Limiting energy-transport and drift-diffusion models are deduced and simulations in bulk silicon are performed.

PACS number: 72.20.-i
(Some figures in this article are in colour only in the electronic version)

1. Introduction

Holes give a relevant contribution to the charge transport properties in a great variety of different semiconductor materials and devices: silicon p-channel field-effect transistors, bipolar transistors, heterostructures bipolar transistors, compound semiconductor p-channel field-effect transistors and optoelectronic devices as lasers and light emitting diodes.

Although modern computers operate at continuously increasing CPU speed, the direct integration of the system of semiclassical Boltzmann transport equations for electrons and holes is a daunting computational task. For this reason, many authors have developed macroscopic models, for example, see [1-12] and references therein. The main problem related to these models is that of the closure since the number of unknown functions exceeds that of the balance equations. The hydrodynamical models, usually employed in applications, are based on heuristic arguments and $a d$ hoc relations, containing free adjustable parameters, without
any mathematical or physical justification in the framework of a consistent non-equilibrium thermodynamical theory.

In industrial applications the simulation of hole transport, in bipolar devices, is usually obtained by integrating the drift-diffusion model [13, 14], which is based on the assumption of isothermal charge flow. This is well justified in devices such as MOSFETs (metal oxide field effect transistors) since the contribution of holes to the total current is marginal. However in devices as bipolar heterojunctions the role of holes in charge transport is of the same order or even greater than that of electrons. In such situations more sophisticated models are needed.

In this paper, we present a hydrodynamical model of hole transport in silicon semiconductors based on the maximum entropy principle (hereafter MEP) following the same approach presented in [6,15-17] for electrons.

A similar approach has already been used in [18] adopting the simplified model with only a single parabolic band. Here both heavy and light holes are considered along with the splitoff band. Intra- and inter-band transitions are considered including scattering with non-polar optical phonons, acoustic phonons and impurities. Also the main generation-recombination mechanisms for silicon are taken into account: the Auger and the Schockley-Read-Hall effects in their relaxation approximations [19, 20].

Due to the anisotropy of the bands the determination of the constitutive equations is rather involved and suitable expansions must be introduced to make the problem analytically tractable as already well known in other previous approaches [21, 22].

The plan of the paper is as follows. First, in section 2 we recall the main concepts regarding the energy band structure and hole transport. Then we present the macroscopic balance equations in section 3 and use the MEP in sections 4 and 5 to obtain the closure relations for fluxes (section 6) and production terms (section 7). In section 8, limiting energytransport and drift-diffusion models are recovered under suitable scaling assumptions. In the last section simulations in homogenous silicon are presented.

2. The kinetic semiclassical model

The hole energy spectrum in Si is represented by three bands [23]. A schematic representation is given in figure 1. The first two bands are the heavy and light valence bands which are degenerate at $\mathbf{k}=0$, where they reach their maximum. The third one is the so-called split-off band which is separated from the first two by the spin-orbit energy $\Delta=0.0443 \mathrm{eV}$ at $\mathbf{k}=0$. Because of its low density of states and its energy separation the split-off valence band is usually neglected.

In [18] a simplified model has been used: a single spherical parabolic band, that of the heavy holes, with an effective mass related to some plausible average in the \mathbf{k} space. Here a more refined approach is followed: all the three valence bands are included.

The energy bands of heavy and light holes are analytically approximated with warped bands
$\mathcal{E}_{H}(\mathbf{k})=\frac{\hbar^{2}}{2 m_{e}}\left\{A k^{2} \mp\left[B^{2} k^{4}+C^{2}\left(k_{x}^{2} k_{y}^{2}+k_{y}^{2} k_{z}^{2}+k_{z}^{2} k_{x}^{2}\right)\right]^{1 / 2}\right\}, \quad H=+,-$,
where + and - stand for the light and heavy hole bands respectively. k_{x}, k_{y}, k_{z} are the component of \mathbf{k} with respect to the principal crystallographic axes. \mathbf{k} varies over \mathbb{R}^{3}. The parameters A, B and C depend on the specific material. The constant energy surfaces have a warped form (see figure 2).

The (microscopic) hole velocity \mathbf{v} in the heavy and light warped bands is obtained with the quantum mechanics formula $v^{i}=\frac{1}{\hbar} \nabla \mathcal{E}$ and reads

Figure 1. A schematic representation of the energy conduction and valence bands ($\mathcal{E}(\mathbf{k})$ versus \mathbf{k} in arbitrary units) in Si . The conduction bands for holes are obtained from those of valence by reversing the sign.

Figure 2. Constant energy surface of the warped bands at $k_{z}=0$.

$$
v_{i}=\frac{\hbar}{2 m_{e}} k_{i}\left\{2 A \mp \frac{2 k^{2} B^{2}+C^{2} k_{\perp}^{2}}{\sqrt{B^{2} k^{4}+C^{2}\left(k_{x}^{2} k_{y}^{2}+k_{y}^{2} k_{z}^{2}+k_{z}^{2} k_{x}^{2}\right)}}\right\}
$$

where \mathbf{k}_{\perp} is the component of \mathbf{k} orthogonal to the i th crystallographic axis.

The split-off hole band is described by the parabolic approximation

$$
\mathcal{E}=\hbar^{2} \frac{|\mathbf{k}|^{2}}{2 m_{H}^{*}}, \quad v^{i}=\frac{1}{\hbar} \nabla \mathcal{E}=\frac{\hbar k^{i}}{m_{H}^{*}}
$$

with m_{H}^{*} being the effective mass.
From a formal point of view the parabolic band is recovered from the warped one by setting $A=1, B=C=0$ and replacing m_{e} with m_{H}^{*}.

Simple properties, useful in the sequel, are the following.
Proposition 1. The warped energy bands have the same (discrete) symmetries of the cube, in particular the permutation of axes.

The semiclassical description of hole transport in semiconductors consists of a transport equation for each band coupled to the Poisson equation for the electric potential

$$
\begin{align*}
& \frac{\partial f_{H}}{\partial t}+v^{i}(\mathbf{k}) \frac{\partial f_{H}}{\partial x^{i}}+\frac{e E^{i}}{\hbar} \frac{\partial f_{H}}{\partial k^{i}}=\mathcal{C}\left[f_{H}, f_{G}\right]+\mathcal{I}\left[f_{H}, f_{\bar{A}}\right] \tag{2}\\
& E_{i}=-\frac{\partial \phi}{\partial x_{i}} \tag{3}\\
& \epsilon \Delta \phi=-e\left(N_{D}-N_{A}-n+p\right) \tag{4}
\end{align*}
$$

where ϵ is the dielectric constant, n, p, N_{D}, N_{A} are the electron, hole, acceptor and donor densities respectively. e is the absolute value of the elementary charge. The indexes H and G can be + (light holes), - (heavy holes) or SO (split-off band). The model is completed by adding the transport equations for electrons in the conduction bands which are coupled to those for holes through the recombination-generation terms $\mathcal{I}\left[f_{H}, f_{\bar{A}}\right]$, where the index \bar{A} runs over the considered electron bands or valleys.
$\mathcal{C}\left[f_{H}, f_{G}\right]$ comprises intra- and inter-band acoustic, non-polar optical and impurity scatterings in an additive way. In the linear approximation each of them is written as

$$
\mathcal{C}\left[f_{H}, f_{G}\right]=\int \mathrm{d} \mathbf{k}_{\mathbf{G}}^{\prime}\left[P\left(\mathbf{k}_{\mathbf{G}}^{\prime}, \mathbf{k}_{\mathbf{H}}\right) f_{G}^{\prime}-P\left(\mathbf{k}_{\mathbf{H}}, \mathbf{k}_{\mathbf{G}}^{\prime}\right) f_{H}\right]
$$

with $P\left(\mathbf{k}_{\mathbf{H}}, \mathbf{k}_{\mathbf{G}}^{\prime}\right)$ being the transition rate from the state with wave vector $\mathbf{k}_{\mathbf{H}}$ to the state with wave vector $\mathbf{k}_{\mathbf{G}}^{\prime}$. This latter belongs to another band in the case of inter-band collision.

In the sequel we will make use of the detailed balance principle which both for intra-band and inter-band transition reads

$$
\begin{equation*}
P\left(\mathbf{k}_{\mathbf{G}}^{\prime}, \mathbf{k}_{\mathbf{H}}\right)=\exp \left[-\frac{\left(\mathcal{E}_{H}-\mathcal{E}_{G}^{\prime}\right)+\Delta_{H G}}{k_{B} T_{L}}\right] P\left(\mathbf{k}_{\mathbf{H}}, \mathbf{k}_{\mathbf{G}}^{\prime}\right) \tag{5}
\end{equation*}
$$

where $\Delta_{H G}$ is the difference between the bottom of the energy bands. $\Delta_{H G}$ is zero for intra-band transition and for inter-band transition between light and heavy holes.

In detail the scattering mechanisms are taken to have the following scattering rates [24, 25]. All the physical parameters are summarized in table 1.

- intra-band non-polar optical phonon scattering

$$
P\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\mathcal{K}_{o p}\left[\begin{array}{c}
N_{o p} \\
N_{o p}+1
\end{array}\right] \delta\left[\mathcal{E}_{c}\left(\mathbf{k}^{\prime}\right)-\mathcal{E}_{c}(\mathbf{k}) \mp \hbar \omega_{o p}\right]
$$

where δ is Dirac's delta, $\mathcal{K}_{o p}=\frac{\left(D_{t} K\right)^{2}}{8 \pi^{2} \rho \omega_{o p}}$ is a coupling constant and $N_{o p}$ is the optical phonon distribution at equilibrium

$$
\begin{equation*}
N_{o p}=\frac{1}{\exp \left(\hbar \omega_{o p} / k_{B} T_{L}\right)-1} \tag{6}
\end{equation*}
$$

Table 1. Values of the physical parameters used for silicon. The values have been taken according to [26].

m_{e}	Electron rest mass	$9.1095 \times 10^{-28} \mathrm{~g}$
q	Absolute electric charge	$1.60217733^{-19} \mathrm{C}$
m_{H}^{*}	Split-off band mass	$0.57 m_{e}$
T_{L}	Lattice temperature	$300^{\circ} \mathrm{K}$
ρ	Silicon density	$2.33 \mathrm{~g} \mathrm{~cm}^{-3}$
v_{s}	Longitudinal sound speed	$9.18 \times 10^{5} \mathrm{~cm} \mathrm{~s}^{-1}$
$\hbar \omega_{o p}$	Non-polar optical phonon energy	$0.0612 \mathrm{eV}^{2}$
ϵ_{r}	Relative dielectric constant	11.7
ϵ_{0}	Vacuum dieletric constant	$8.85 \times 10^{-18} \mathrm{C} \mathrm{V}^{-1} \mu \mathrm{~m}^{-1}$
ϵ	Absolute dielectric constant	$\epsilon_{r} \epsilon_{0}$
A	Band parameter	4.22
B	Band parameter	0.78
C	Band parameter	4.8

- intra-band acoustic phonon scattering

$$
P\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\mathcal{K}_{a c} q\left[\begin{array}{c}
N_{q} \\
N_{q}+1
\end{array}\right] \frac{1}{4}\left(1+3\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}\right) \delta\left(\mathcal{E}_{c}\left(\mathbf{k}^{\prime}\right)-\mathcal{E}_{c}(\mathbf{k}) \mp \hbar q v_{s}\right),
$$

where the acoustic phonon wave vector is approximated by [25]

$$
q=\sqrt{2} k \sqrt{1-\mathbf{n} \cdot \mathbf{n}^{\prime}},
$$

$\mathcal{K}_{a c}=\frac{\Xi_{d}^{2}}{8 \pi^{2} \rho v_{s}}$, with $\mathbf{n}=\mathbf{k} / k, \mathbf{n}^{\prime}=\mathbf{k}^{\prime} / k^{\prime}, v_{s}$ is the longitudinal component of the sound speed.

- intra-band impurity scattering

$$
P\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=\mathcal{K}_{\mathrm{imp}} \frac{1+3\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}}{\left(\beta^{2}+q^{2}\right)^{2}} \delta\left(\mathcal{E}_{c}^{\prime}-\mathcal{E}_{c}\right)
$$

where, with the same approximation as for the acoustic phonon,

$$
K_{\mathrm{imp}}=\frac{Z^{2} n_{I} e^{4}}{4 \hbar \pi^{2} \epsilon^{2}}, \quad q=\sqrt{2} k \sqrt{1-\mathbf{n} \cdot \mathbf{n}^{\prime}},
$$

with Z being the impurity atomic number, n_{I} the impurity concentration and β is inverse Debye length

$$
\beta=\sqrt{\frac{n_{I} e^{2}}{\epsilon k_{B} T_{L}}}
$$

- inter-band non-polar optical phonon scattering. We will adopt the approximation of writing this scattering as the intra-band case
- inter-band acoustic phonon scattering. The only difference with respect to the intra-bands case is the change of the overlap factor

$$
P\left(\mathbf{k}_{H}, \mathbf{k}_{G}^{\prime}\right)=\mathcal{K}_{a c} q\left[\begin{array}{c}
N_{q} \\
N_{q}+1
\end{array}\right] \frac{3\left(1-\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}\right)}{4} \delta\left(\mathcal{E}_{c}\left(\mathbf{k}_{G}^{\prime}\right)-\mathcal{E}_{c}\left(\mathbf{k}_{H}\right) \mp \hbar q v_{s}\right)
$$

with \mathbf{k}_{H} and $\mathbf{k}^{\prime}{ }_{G}$ belonging to the H-band and the G-band respectively.

- inter-band impurity scattering. Also in this case the difference with respect to the intraband scatterings is the change of the overlap factor

$$
P\left(\mathbf{k}, \mathbf{k}^{\prime}\right)=3 \mathcal{K}_{\mathrm{imp}} \frac{\left(1-\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}\right)}{\left(\beta^{2}+q^{2}\right)^{2}} \delta\left(\mathcal{E}_{c}^{\prime}-\mathcal{E}_{c}\right)
$$

- electron-hole generation recombination. It includes several mechanisms. We will consider the most important ones for Si that is the Auger and the Schockley-Read-Hall processes in their relaxation approximations [19]

$$
\begin{aligned}
\mathcal{I}\left[f_{A}, f_{\bar{A}}\right]=- & \Gamma_{A}\left[n_{A} n_{\bar{A}} f_{A}-n_{A} n_{i}{ }^{2} \mathcal{M}_{A}\right]-\Gamma_{\bar{A}}\left[n_{A} n_{\bar{A}} f_{\bar{A}}-n_{\bar{A}} n_{i}{ }^{2} \mathcal{M}_{\bar{A}}\right] \\
& +\frac{n_{\bar{A}} f_{A}-n_{i}{ }^{2} \mathcal{M}_{A}}{\tau_{h}\left(n+n_{i}\right)+\tau_{e}\left(p+n_{i}\right)},
\end{aligned}
$$

where Γ_{A} are constants, \mathcal{M}_{A} the Maxwellians normalized to unit density, τ_{A} the carrier life time and n_{i} the intrinsic concentration. The τ_{A} 's will be assumed constant.

Remark. The direct integration of the transport equations requires a huge amount of CPU time and it is not practical for CAD purposes. Our aim is to develop a macroscopic model more suited for engineering applications starting form the kinetic approach.

The simple drift-diffusion model is affected by serious drawbacks at submicron scale and does not contain the energy as dynamical variable. Therefore one looks for hydrodynamical models. A consistent hydrodynamical model on MEP has been formulated in [18] assuming a single parabolic band. Here we extend such a model by including the warped effects and all the three valence bands.

3. Macroscopic balance equations

Starting from the Boltzmann equation (2), it is possible to obtain the macroscopic equations for the holes multiplying equation (2) by a weight function $\psi=\psi(\mathbf{k})$ and integrating with respect to \mathbf{k} over \mathbb{R}^{3}. If one indicates with f_{H} the hole distribution in one of the bands and sets

$$
M_{\psi}=\int_{\mathbb{R}^{3}} \psi(\mathbf{k}) f_{H}(\mathbf{x}, \mathbf{k}, t) \mathrm{d} \mathbf{k}
$$

which is the moment of f_{H} relative to the weight function $\psi(\mathbf{k})$, the following equation:
$\frac{\partial M_{\psi}}{\partial t}+\int_{\mathbb{R}^{3}} \psi(\mathbf{k}) \mathbf{v} \cdot \nabla_{\mathbf{x}} f_{H} \mathrm{~d} \mathbf{k}+\frac{e \mathbf{E}}{\hbar} \cdot \int_{\mathbb{R}^{3}} \psi(\mathbf{k}) \nabla_{\mathbf{k}} f_{H} \mathrm{~d} \mathbf{k}=\int_{\mathbb{R}^{3}} \psi(\mathbf{k}) \mathcal{C}\left[f_{H}\right] \mathrm{d} \mathbf{k}$
is obtained. Noting that both ψ and \mathbf{v} do not depend on the variable \mathbf{x} we can write

$$
\int_{\mathbb{R}^{3}} \psi(\mathbf{k}) \mathbf{v} \cdot \nabla_{\mathbf{x}} f_{H} \mathrm{~d} \mathbf{k}=\nabla_{\mathbf{x}} \cdot \int_{\mathbb{R}^{3}} \psi(\mathbf{x}) \mathbf{v} f_{H} \mathrm{~d} \mathbf{k}
$$

Moreover, applying the Gauss theorem and noting that f_{H} has to rapidly tend to 0 as \mathbf{k} tends to ∞ in order to guarantee the existence of the integrals, we get ${ }^{1}$
$\frac{\partial M_{\psi}}{\partial t}+\frac{\partial}{\partial x^{i}} \int_{\mathbb{R}^{3}} \psi(\mathbf{k}) v^{i} f_{H} \mathrm{~d} \mathbf{k}-\frac{e E^{i}}{\hbar} \int_{\mathbb{R}^{3}} \frac{\partial \psi}{\partial k^{i}} f_{H} \mathrm{~d} \mathbf{k}=\int_{\mathbb{R}^{3}} \psi(\mathbf{k}) \mathcal{C}\left[f_{H}\right] \mathrm{d} \mathbf{k}$.
First, we set $\psi(\mathbf{k})=1$ and get the balance equation for the hole density

$$
\begin{equation*}
\frac{\partial p_{H}}{\partial t}+\frac{\partial\left(p_{H} V_{H}^{i}\right)}{\partial x^{i}}=p_{H} C_{p}, \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
p_{H} & =\int_{\mathbb{R}^{3}} f_{H} \mathrm{~d} \mathbf{k} \quad \text { is the hole density, } \\
V_{H}^{i} & =\frac{1}{p_{H}} \int_{\mathbb{R}^{3}} v^{i} f_{H} \mathrm{~d} \mathbf{k} \quad \text { is the average hole velocity, } \\
C_{p} & =\frac{1}{p_{H}} \int_{\mathbb{R}^{3}} \mathcal{C}\left[f_{H}\right] \mathrm{d} \mathbf{k} \quad \text { is the density production. }
\end{aligned}
$$

[^0]As the second weight function we take $\psi(\mathbf{k})=\hbar k^{i}, i=1,2,3$ and after some simple algebra, we get the average crystal momentum balance equation

$$
\begin{equation*}
\frac{\partial\left(p_{H} P_{H}^{j}\right)}{\partial t}+\frac{\partial\left(p_{H} U_{H}^{i j}\right)}{\partial x^{i}}-p_{H} e E^{j}=p_{H} C_{P_{H}}^{j}, \quad j=1,2,3, \tag{10}
\end{equation*}
$$

where
$P_{H}^{j}=\frac{1}{p_{H}} \int_{\mathbb{R}^{3}} \hbar k^{j} f_{H} \mathrm{~d} \mathbf{k} \quad j=1,2,3 \quad$ is the average crystal momentum,
$U_{H}^{i j}=\frac{1}{p_{H}} \int_{\mathbb{R}^{3}} f_{H} v^{i} \hbar k^{j} \mathrm{~d} \mathbf{k} \quad$ is the crystal momentum flux,
$C_{P_{H}}^{j}=\frac{1}{p_{H}} \int_{\mathbb{R}^{3}} \hbar k^{j} \mathcal{C}\left[f_{H}\right](\mathbf{x}, \mathbf{k}, t) \mathrm{d} \mathbf{k} \quad$ is the average crystal momentum production.
Now if we assume that $\psi(\mathbf{k})=\mathcal{E}(\mathbf{k})$, we get the balance equation for the average hole energy

$$
\begin{equation*}
\frac{\partial\left(p_{H} W_{H}\right)}{\partial t}+\frac{\partial\left(p_{H} S_{H}^{i}\right)}{\partial x^{i}}-p_{H} e E_{i} V_{H}^{i}=p_{H} C_{W_{H}}, \tag{11}
\end{equation*}
$$

where

$$
\begin{array}{ll}
W_{H}=\frac{1}{p_{H}} \int_{\mathbb{R}^{3}} \mathcal{E}(\mathbf{k}) f_{H} \mathrm{~d} \mathbf{k} & \text { is the average hole energy, } \\
S_{H}^{i}=\frac{1}{p_{H}} \int_{\mathbb{R}^{3}} \mathcal{E}(\mathbf{k}) f_{H} v^{i} d \mathbf{k} \quad \text { is the energy flux, } \\
C_{W_{H}}=\frac{1}{p_{H}} \int_{\mathbb{R}^{3}} \mathcal{E}(\mathbf{k}) \mathcal{C}\left[f_{H}\right](\mathbf{x}, \mathbf{k}, t) \mathrm{d} \mathbf{k} \quad \text { is the energy production. }
\end{array}
$$

Finally, let us set $\psi(\mathbf{k})=\mathcal{E}(\mathbf{k}) v^{j}, j=1,2,3$, obtaining the balance equation for the energyflux

$$
\begin{equation*}
\frac{\partial\left(p_{H} S_{H}^{j}\right)}{\partial t}+\frac{\partial\left(p_{H} F_{H}^{i j}\right)}{\partial x^{i}}-p_{H} e E_{i} G_{H}^{j i}=p_{H} C_{S_{H}}^{j} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{H}^{i j}=\frac{1}{p_{H}} \int_{\mathbb{R}^{3}} \mathcal{E}(\mathbf{k}) v^{i} v^{j} f \mathrm{~d} \mathbf{k} \\
& G_{H}^{i j}=\frac{1}{p_{H}} \int_{\mathbb{R}^{3}} \frac{1}{\hbar} f_{H} \frac{\partial\left(\mathcal{E} v^{i}\right)}{\partial k^{j}} \mathrm{~d} \mathbf{k}, \\
& C_{S_{H}}^{j}=\frac{1}{p_{H}} \int_{\mathbb{R}^{3}} \mathcal{E}(\mathbf{k}) v^{j} \mathcal{C}\left[f_{H}\right] \mathrm{d} \mathbf{k} \quad \text { is the flux of energy flux }, \\
&
\end{aligned}
$$

With this choice of the functions $\psi(\mathbf{k})$, our model is given by the following system of balance equations for each population of holes:

$$
\begin{align*}
& \frac{\partial p_{H}}{\partial t}+\frac{\partial\left(p_{H} V_{H}^{i}\right)}{\partial x^{i}}=p_{H} C_{p}, \tag{13}\\
& \frac{\partial\left(p_{H} P_{H}^{j}\right)}{\partial t}+\frac{\partial\left(p_{H} U_{H}^{i j}\right)}{\partial x^{j}}-p_{H} e E^{j}=p_{H} C_{P_{H}}^{j}, \quad j=1,2,3, \tag{14}\\
& \frac{\partial p_{H} W_{H}}{\partial t}+\frac{\partial\left(p_{H} S_{H}^{i}\right)}{\partial x^{i}}-p_{H} e E_{i} V_{H}^{i}=p_{H} C_{W_{H}}, \tag{15}
\end{align*}
$$

$$
\begin{equation*}
\frac{\partial\left(p_{H} S_{H}^{j}\right)}{\partial t}+\frac{\partial\left(p_{H} F_{H}^{i j}\right)}{\partial x^{i}}-p_{H} e E_{i} G_{H}^{j i}=p_{H} C_{S_{H}}^{j} \quad j=1,2,3 \tag{16}
\end{equation*}
$$

where $p_{H}, \mathbf{V}_{H}, W_{H}$ and \mathbf{S}_{H} are assumed as fundamental variables since they have a direct physical meaning. Therefore there is the problem of closing the system (13)-(16) by expressing the fluxes $U_{H}^{i j}, F_{H}^{i j}, G_{H}^{i j}$ and the production term $C_{p}, C_{P_{H}}^{j}, C_{W_{H}}, C_{S_{H}}^{j}$ as functions of p_{H}, V_{H}^{i}, W_{H} and S_{H}^{i}.

4. Maximum entropy principle and closure relations

In order to get the closure relations for semiconductor hydrodynamical models, many strategies have been proposed, often without any consistent mathematical or physical rationale [27]. In [15-17], the MEP [28-31] has been used to solve the problem of finding self-consistent closure relations for electron macroscopic balance equations, both for Si and GaAs. Here we employ MEP to get the required closure relations for the system (13)-(16).

According to this principle, if we have a finite number of known moments for each band H

$$
M_{H, \alpha}=\int_{\mathbb{R}^{3}} \psi_{\alpha} f_{H} \mathrm{~d} \mathbf{k}, \quad H=-,+, S O
$$

then the distribution function $f_{H}^{M E}$, which can be used for an evaluation of the unknown moments, corresponds to the extremum of the entropy functional, under the restrictions

$$
\begin{equation*}
M_{H, \alpha}=\int_{\mathbb{R}^{3}} \psi_{\alpha} f_{H}^{M E} \mathrm{~d} \mathbf{k} \tag{17}
\end{equation*}
$$

The formal setting of the MEP has been developed in the framework of the information theory by Shannon and applied for the first time to statistical mechanics by Jaynes [28]. He showed that many questions of classical and quantum mechanics can be reformulated as statistical inference problems where the MEP distribution represents the least biased distribution with respect to the only knowledge of a finite number of moments.

In the case of a sufficiently dilute hole gas the entropy functional, according to the classical limit of the expression arising in the Fermi statistics, is for each population

$$
\begin{equation*}
-k_{B} \int_{\mathbb{R}^{3}}\left(f_{H} \log f_{H}-f_{H}\right) \mathrm{d} \mathbf{k} \tag{18}
\end{equation*}
$$

while the total entropy reads

$$
\begin{equation*}
s=-k_{B} \sum_{H} \int_{\mathbb{R}^{3}}\left(f_{H} \log f_{H}-f_{H}\right) \mathrm{d} \mathbf{k}_{H} . \tag{19}
\end{equation*}
$$

By introducing the Lagrangian multipliers $\Lambda_{H, \alpha}$, looking for the extremals of the entropy is equivalent to looking for the extremals without constraints of the following functional:

$$
\begin{equation*}
s^{\prime}=\sum_{H, \alpha} \Lambda_{H, \alpha}\left(\int_{\mathbb{R}^{3}} \psi_{H, \alpha} f_{H} \mathrm{~d} \mathbf{k}-M_{H, \alpha}\right)-s \tag{20}
\end{equation*}
$$

which is the Legendre transform of the entropy functional s. From variational calculus,

$$
\delta s^{\prime}=k_{B} \sum_{H} \int_{\mathbb{R}^{3}} \delta f_{H} \log f_{H} \mathrm{~d} \mathbf{k}+\sum_{H, \alpha} \Lambda_{H, \alpha} \int_{\mathbb{R}^{3}} \psi_{H, \alpha} \delta f_{H} \mathrm{~d} \mathbf{k}=0
$$

for arbitrary δf_{H}. Therefore for each band H ,

$$
\log f_{H}+\frac{\Lambda_{H, \alpha} \psi_{H, \alpha}}{k_{B}}=0
$$

from which we get the maximum entropy distribution function as

$$
\begin{equation*}
f_{H}^{M E}=\exp \left(-\sum_{\alpha} \frac{\Lambda_{H, \alpha} \psi_{H, \alpha}}{k_{B}}\right) \tag{21}
\end{equation*}
$$

If we make the choice of the weight functions $\psi_{H, \alpha}=(1, \mathbf{v}, \mathcal{E}, \mathcal{E} \mathbf{v})$ for each band $H=+,-$, SO, one has to introduce the Lagrangian multipliers $\Lambda_{H}=\left(\lambda_{H}, \boldsymbol{\lambda}_{H}^{P}, \lambda_{H}^{W}, \boldsymbol{\lambda}_{H}^{S}\right)$ and the maximum entropy distribution function reads

$$
\begin{equation*}
f_{H}^{M E}=\exp \left[-\left(\frac{1}{k_{B}} \lambda_{H}+\lambda_{H}^{P} \cdot \mathbf{v}+\lambda_{H}^{W} \mathcal{E}+\lambda_{H}^{S} \cdot \mathbf{v} \mathcal{E}\right)\right] . \tag{22}
\end{equation*}
$$

In order to complete the program, it is necessary to express the Lagrangian multipliers in terms of the fundamental variables by evaluating the constraints (17). On account of the high nonlinearities, we were not able to find out an analytical explicit form of the multipliers, but, by proceeding as in [15], we expand $f_{H}^{M E}$ with respect to a parameter of anisotropy δ and solve the resulting equations at several orders in such a parameter. In particular with the previous choice of the weights in the moments, one expand $f_{H}^{M E}$ as

$$
\begin{align*}
f_{H}^{M E} & =\exp \left[-\left(\frac{1}{k_{B}} \lambda_{H}+\lambda_{H}^{W} \mathcal{E}+\delta \boldsymbol{\lambda}_{H}^{P} \cdot \mathbf{v}+\delta \boldsymbol{\lambda}_{H}^{S} \cdot \mathbf{v} \mathcal{E}\right)\right] \\
& =\exp \left(-\frac{1}{k_{B}} \lambda_{H}-\lambda^{W} \mathcal{E}\right)\left[1-\delta\left(\boldsymbol{\lambda}_{H}^{P} \cdot \mathbf{v}+\boldsymbol{\lambda}_{H}^{S} \cdot \mathbf{v} \mathcal{E}\right)\right]+o(\delta) \tag{23}
\end{align*}
$$

For the split-off valence band, since a parabolic approximation is used, we are in the same case considered in [18]. For the other two valence bands, the situation is much more involved. In the following sections by using the distribution in (23) we will able to obtain up to first order in δ closure relations for the system (13)-(16) also for light and heavy holes.

5. Determination of the Lagrangian multipliers

The first step in order to get the required closure relations consists of expressing the Lagrangian multipliers as a function of the moments, that is, with the previous choice of the weights, as functions of $p_{H}, \mathbf{V}_{H}, W_{H}, \mathbf{S}_{H}$. To this aim, one has to solve the following nonlinear algebraic system (in this and the following section we will drop the band index for simplifying the notation):

$$
\begin{align*}
p & =\int_{\mathbb{R}^{3}} f^{M E} \mathrm{~d} \mathbf{k} \tag{24}\\
V_{i} & =\frac{1}{p} \int_{\mathbb{R}^{3}} v_{i} f^{M E} \mathrm{~d} \mathbf{k} \tag{25}\\
W & =\frac{1}{p} \int_{\mathbb{R}^{3}} \mathcal{E} f^{M E} \mathrm{~d} \mathbf{k} \tag{26}\\
S_{i} & =\frac{1}{p} \int_{\mathbb{R}^{3}} v_{i} \mathcal{E} f^{M E} \mathrm{~d} \mathbf{k} \tag{27}
\end{align*}
$$

where $f_{M E}$ is approximated from now on with (23). By introducing the polar and azimuthal angles ϑ and φ with respect to the main crystallographic axes, the expression of the energy valence bands can be rewritten as

$$
\begin{equation*}
\mathcal{E}(\mathbf{k})=\frac{\hbar^{2} k^{2}}{2 m_{e}}[A \mp g(\vartheta, \varphi)] \tag{28}
\end{equation*}
$$

where

$$
g(\vartheta, \varphi)=\sqrt{B^{2}+C^{2}\left(\sin ^{2} \vartheta \cos ^{2} \vartheta+\sin ^{4} \vartheta \cos ^{2} \varphi \sin ^{2} \varphi\right)}
$$

and the element of volume dk can be written as

$$
\mathrm{d} \mathbf{k}=\frac{\sqrt{2} m_{e}^{3 / 2}}{\hbar^{3}} \sqrt{\mathcal{E}}[A \mp g(\vartheta, \varphi)]^{-3 / 2} \mathrm{~d} \mathcal{E} \mathrm{~d} \Omega
$$

with $\mathrm{d} \Omega=\sin \vartheta \mathrm{d} \vartheta \mathrm{d} \varphi$ being the element of solid angle. Moreover the unit vector \mathbf{n} has components $(\sin \vartheta \cos \varphi, \sin \vartheta \sin \varphi, \cos \vartheta)$

In the following we will make also use of the fact that for integral over S^{2}, the unit sphere of \mathbb{R}^{3}, one has ${ }^{2}$

$$
\int_{S^{2}} l^{i_{1}} \cdots l^{i_{k}} \mathrm{~d} \Omega= \begin{cases}0 & \text { if } k \text { is odd } \tag{29}\\ \frac{4 \pi}{k+1} \delta^{\left(i_{1} i_{2}\right.} \cdots \delta^{\left.i_{k-1} i_{k}\right)} & \text { if } k \text { is even }\end{cases}
$$

The starting point is the following crucial relation:
Proposition 2. The Lagrangian multiplier relative to the energy up to first order in δ has the same expression as the parabolic case

$$
\lambda^{W}=\frac{3}{2 W}
$$

Proof. According to the representation theorem for tensor-valued isotropic functions, W must depend on $\boldsymbol{\lambda}^{P}$ and $\boldsymbol{\lambda}^{S}$ only through their modulus. Since the integrals

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}} \exp \left(-\frac{1}{k_{B}} \lambda-\lambda^{W} \mathcal{E}\right)\left(\boldsymbol{\lambda}^{P} \cdot \mathbf{v}+\lambda^{S} \cdot \mathbf{v} \mathcal{E}\right) \mathrm{d} \mathbf{k} \\
& \int_{\mathbb{R}^{3}} \mathcal{E} \exp \left(-\frac{1}{k_{B}} \lambda-\lambda^{W} \mathcal{E}\right)\left(\boldsymbol{\lambda}^{P} \cdot \mathbf{v}+\boldsymbol{\lambda}^{S} \cdot \mathbf{v} \mathcal{E}\right) \mathrm{d} \mathbf{k}
\end{aligned}
$$

are linear in $\boldsymbol{\lambda}^{P}$ and $\boldsymbol{\lambda}^{S}$ they must vanishes. Therefore the constraint (26) gives

$$
W=\frac{\int_{\mathbb{R}^{3}} \mathcal{E} \exp \left(-\frac{1}{k_{B}} \lambda-\lambda^{W} \mathcal{E}\right) \mathrm{d} \mathbf{k}}{\int_{\mathbb{R}^{3}} \exp \left(-\frac{1}{k_{B}} \lambda-\lambda^{W} \mathcal{E}\right) \mathrm{d} \mathbf{k}}=\frac{\int_{0}^{+\infty} \mathcal{E}^{3 / 2} \exp \left(-\lambda^{W} \mathcal{E}\right) \mathrm{d} \mathcal{E}}{\int_{0}^{+\infty} \mathcal{E}^{1 / 2} \exp \left(-\lambda^{W} \mathcal{E}\right) \mathrm{d} \mathcal{E}}=\frac{3}{2 \lambda^{W}}
$$

after we have used the relation valid for any $a, \nu>0$

$$
\int_{0}^{\infty} x^{\nu-1} \exp (-a x) \mathrm{d} x=\frac{\Gamma(v)}{a^{v}}
$$

with $\Gamma(v)$ being the special Gamma function, which satisfies for positive integer p,

$$
\Gamma\left(p+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{p}}(2 p-1)!!
$$

Once λ^{W} has been explicitly determined, we can evaluate the other constraints. For the Lagrangian multipliers relative to the density, with consideration similar to that for λ^{W}, one finds

$$
\lambda=-k_{B} \log \frac{\hbar^{3} p}{2 J_{1} \pi^{1 / 2}\left(m_{e} W / 3\right)^{3 / 2}} \quad \text { with } \quad J_{1}=\int_{S^{2}} D^{-3 / 2} \mathrm{~d} \Omega
$$

${ }^{2}$ Round brackets means symmetrization, e.g. $A_{i j}=\frac{1}{2}\left(A_{i j}+A_{j i}\right)$.

Table 2. Values of the parameters entering in the constitutive relations.

Parameter	Heavy holes	Light holes
J_{1}	4.94521	0.77736
J_{2}	15.3740	6.85986
J_{3}	6.59362	1.03648
J_{4}	38.4350	23.3588
J_{5}	27.7599	0.19082
J_{6}	9.25329	0.06361
J_{7}	-4.38055	-0.02978
J_{8}	16.3034	0.40286
J_{9}	20.3154	0.418760
J_{10}	-7.71068	-0.188442
J_{11}	38.0139	2.66628

where

$$
D=A \mp \sqrt{B^{2}+C^{2} \sin ^{2} \vartheta\left(\sin ^{2} \vartheta \sin ^{2} \varphi \cos ^{2} \varphi+\cos ^{2} \vartheta\right)}
$$

Concerning $\boldsymbol{\lambda}^{P}$ and $\boldsymbol{\lambda}^{S}$ from the representation formulae we have

$$
\begin{align*}
& \boldsymbol{\lambda}^{V}=b_{11}(W) \mathbf{V}+b_{12}(W) \mathbf{S} \tag{30}\\
& \boldsymbol{\lambda}^{S}=b_{21}(W) \mathbf{V}+b_{22}(W) \mathbf{S} \tag{31}
\end{align*}
$$

Evaluating the constraints (14) and (16) one gets

$$
\begin{equation*}
b_{11}=-\frac{7 m_{e}}{W} \frac{J_{1}}{J_{2}}, \quad b_{12}=b_{21}=\frac{3 m_{e}}{W^{2}} \frac{J_{1}}{J_{2}}, \quad b_{22}=-\frac{9 m_{e}}{5 W^{3}} \frac{J_{1}}{J_{2}} \tag{32}
\end{equation*}
$$

where

$$
\begin{aligned}
& J_{2}=\int_{S^{2}} \frac{T^{2}}{D^{3 / 2}} \cos ^{2} \vartheta \mathrm{~d} \Omega \quad \text { with } \\
& \qquad \quad T=\left(2 A \mp \frac{2 B^{2}+C^{2} \sin ^{2} \vartheta}{\sqrt{B^{2}+C^{2} \sin ^{2} \vartheta\left(\sin ^{2} \vartheta \sin ^{2} \varphi \cos ^{2} \varphi+\cos ^{2} \vartheta\right)}}\right) \frac{1}{\sqrt{D}} .
\end{aligned}
$$

The integrals J_{1} and J_{2} do not depend on W. They have been evaluated with standard numerical methods and their numerical values are reported in table 2. In the parabolic band case we have evaluated J_{1} and J_{2} analytically, obtaining
$\frac{\lambda}{k_{B}}=-\log \frac{\hbar^{3} p}{\left(\frac{4}{3} \pi m_{H}^{*} W\right)^{3 / 2}}, \quad \lambda^{W}=\frac{3}{2 W}$,
$\boldsymbol{\lambda}^{P}=-\frac{21 m_{H}^{*}}{4 W} \mathbf{V}+\frac{9 m_{H}^{*}}{4 W^{2}} \mathbf{S}, \quad \boldsymbol{\lambda}^{S}=\frac{9 m_{H}^{*}}{4 W^{2}} \mathbf{V}-\frac{27 m_{H}^{*}}{20 W^{3}} \mathbf{S}$
and the distribution function given by the maximum entropy principle becomes

$$
\begin{equation*}
f^{M E}=\frac{\exp \left(-\frac{3}{2 W} \mathcal{E}\right)}{\left(\frac{4}{3} \pi m_{H}^{*} W\right)^{3 / 2}} p\left[1-\left(-\frac{21 m_{H}^{*}}{4 W} \mathbf{V}+\frac{9 m_{H}^{*}}{4 W^{2}} \mathbf{S}\right) \cdot \mathbf{v}-\mathcal{E}\left(\frac{9 m_{H}^{*}}{4 W^{2}} \mathbf{V}-\frac{27 m_{H}^{*}}{20 W^{3}} \mathbf{S}\right) \cdot \mathbf{v}\right] . \tag{34}
\end{equation*}
$$

6. Closure relations: fluxes

Since $f^{M E}$ is now explicitly expressed in terms of the moments $p, \mathbf{V}, W, \mathbf{S}$, we can evaluated all the unknown moments present in the system (13)-(16). In this section we will consider P_{H}^{j} and the fluxes $U^{i j}, F^{i j}, G^{i j}$. First we observe that, as in the parabolic case,

$$
\begin{equation*}
P_{H}^{j}=m^{*} V_{H}^{j} \tag{35}
\end{equation*}
$$

where m^{*} is the holes effective mass whose explicit expression is given by

$$
\begin{equation*}
m^{*}=\frac{J_{3}}{J_{2}} m_{e} \tag{36}
\end{equation*}
$$

with

$$
J_{3}=2 \int_{S^{2}} \frac{T}{D^{2}} \cos ^{2} \vartheta \mathrm{~d} \Omega
$$

Although the anisotropy of the energy bands, on account of their symmetry, the tensors $U^{i j}, F^{i j}, G^{i j}$ are isotropic as stated by the following proposition:

Proposition 3. Up to first order in δ one has

$$
U^{i j}=U(W) \delta^{i j}, \quad F^{i j}=F(W) \delta^{i j}, \quad G^{i j}=G(W) \delta^{i j}
$$

where

$$
\begin{align*}
& U(W)=\frac{2}{3} W(\text { as in the parabolic case }), \tag{37a}\\
& F(W)=\frac{5}{6 m_{e}} \frac{J_{2}}{J_{1}} W^{2} \tag{37b}\\
& G(W)=\frac{1}{2 m_{e}} \frac{J_{4}}{J_{1}} W \tag{37c}
\end{align*}
$$

with
$J_{4}=\int_{S^{2}}\left[\frac{\cos ^{2} \vartheta}{D^{3 / 2}} \frac{(2 A-T \sqrt{D})^{2} \mp 4 B^{2}}{\sqrt{B^{2}+C^{2} \sin ^{2} \vartheta\left(\sin ^{2} \vartheta \sin ^{2} \varphi \cos ^{2} \varphi+\cos ^{2} \vartheta\right)}}+\frac{T}{D}+\frac{T^{2}}{D^{3 / 2}} \cos ^{2} \vartheta\right] \mathrm{d} \Omega$.
Proof. From the definition

$$
U^{i j}=\frac{1}{p} \int_{\mathbb{R}^{3}} f^{M E} v^{i} \hbar k^{j} \mathrm{~d} \mathbf{k} .
$$

Up to first order in δ, by using the $\vartheta, \phi, \mathcal{E}$ coordinates, it is simple matter to show that the off-diagonal components vanishes while the diagonal terms are given by
$U_{11}=\frac{1}{m_{e} p} \int_{\mathbb{R}^{3}} \exp \left(-\frac{1}{k_{B}} \lambda-\lambda^{W} \mathcal{E}\right) k_{x}^{2}\left[A \mp \frac{2 k^{2} B^{2}+C^{2}\left(k_{y}^{2}+k_{z}^{2}\right)}{2 \sqrt{B^{2} k^{4}+C^{2}\left(k_{x}^{2} k_{y}^{2}+k_{x} k_{z}^{2}+k_{y}^{2} k_{z}^{2}\right)}}\right] \mathrm{d} k_{x} \mathrm{~d} k_{y} \mathrm{~d} k_{z}$
$U_{22}=\frac{1}{m_{e} p} \int_{\mathbb{R}^{3}} \exp \left(-\frac{1}{k_{B}} \lambda-\lambda^{W} \mathcal{E}\right) k_{y}^{2}\left[A \mp \frac{2 k^{2} B^{2}+C^{2}\left(k_{x}^{2}+k_{z}^{2}\right)}{2 \sqrt{B^{2} k^{4}+C^{2}\left(k_{x}^{2} k_{y}^{2}+k_{x} k_{z}^{2}+k_{y}^{2} k_{z}^{2}\right)}}\right] \mathrm{d} k_{x} \mathrm{~d} k_{y} \mathrm{~d} k_{z}$
$U_{33}=\frac{1}{m_{e} p} \int_{\mathbb{R}^{3}} \exp \left(-\frac{1}{k_{B}} \lambda-\lambda^{W} \mathcal{E}\right) k_{z}^{2}\left[A \mp \frac{2 k^{2} B^{2}+C^{2}\left(k_{x}^{2}+k_{y}^{2}\right)}{2 \sqrt{B^{2} k^{4}+C^{2}\left(k_{x}^{2} k_{y}^{2}+k_{x} k_{z}^{2}+k_{y}^{2} k_{z}^{2}\right)}}\right] \mathrm{d} k_{x} \mathrm{~d} k_{y} \mathrm{~d} k_{z}$,
where k is the modulus of \mathbf{k}. Since \mathcal{E} is invariant with respect to any permutation of the axes (proposition 1), it follows that $U_{11}=U_{22}=U_{33}$, that is the tensor $U_{i j}$ is isotropic. By evaluating U_{33} in the $\vartheta, \varphi, \mathcal{E}$ coordinates, one has (37a).

With similar argumentations the isotropy of $F_{i j}$ and $G_{i j}$ is obtained along with relations (37b) and (37c).

The values of J_{3} and J_{4} are reported in table 2. In the parabolic band limit one has

$$
\begin{equation*}
U^{i j}=\frac{2}{3} W \delta^{i j}, \quad m_{H}^{*} F^{i j}=\frac{10}{9} W^{2} \delta^{i j}, \quad G^{i j}=\frac{5}{3 m_{H}^{*}} W \delta^{i j} \tag{38}
\end{equation*}
$$

7. Closure relations: production terms

Now we turn our attention to the closure relations of the production terms. Since the various scattering mechanisms contribute in an additive way, we consider them separately.

7.1. Intra-band non-polar optical phonon-hole scattering

By using the chain of equalities
$\int_{\mathbb{R}^{3}} \psi(\mathbf{k}) \mathcal{C}\left[f_{h}\right](\mathbf{x}, \mathbf{k}, t) \mathrm{d} \mathbf{k}=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \psi(\mathbf{k})\left[P\left(\mathbf{k}^{\prime}, \mathbf{k}\right) f\left(\mathbf{k}^{\prime}\right)-P\left(\mathbf{k}, \mathbf{k}^{\prime}\right) f(\mathbf{k})\right] \mathrm{d} \mathbf{k}^{\prime} \mathrm{d} \mathbf{k}$

$$
=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}\left[\psi\left(\mathbf{k}^{\prime}\right)-\psi(\mathbf{k})\right] P\left(\mathbf{k}, \mathbf{k}^{\prime}\right) f(\mathbf{k}) \mathrm{d} \mathbf{k}^{\prime} \mathrm{d} \mathbf{k},
$$

we get the following expressions for the production terms:

$$
\begin{align*}
& C_{p}^{(o p)}=0 \tag{39}\\
& C_{P}^{i(o p)}=c_{11}^{(o p)} V^{i}+c_{12}^{(o p)} S^{i} \tag{40}\\
& C_{W}^{(o p)}=\tilde{\mathcal{K}}_{o p} W^{-3 / 2} J_{1}\left[N_{o p} B_{1}-\left(N_{o p}+1\right) B_{2}\right] \tag{41}\\
& C_{S}^{i(o p)}=c_{21}^{(o p)} V^{i}+c_{22}^{(o p)} S^{i} \tag{42}
\end{align*}
$$

where
$c_{11}^{(o p)}=\frac{J_{3} \tilde{\mathcal{K}}_{o p}}{2 \hbar \omega_{o p}} W^{-3 / 2}\left[N_{o p}\left(-b_{11} B_{1}^{\prime}+b_{12} B_{1}^{\prime \prime}\right)+\left(N_{o p}+1\right)\left(-b_{11} B_{2}^{\prime}+b_{12} B_{2}^{\prime \prime}\right)\right]$,
$c_{12}^{(o p)}=\frac{J_{3} \tilde{\mathcal{K}}_{o p}}{2 \hbar \omega_{o p}} W^{-3 / 2}\left[N_{o p}\left(-b_{12} B_{1}^{\prime}+b_{22} B_{1}^{\prime \prime}\right)+\left(N_{o p}+1\right)\left(-b_{12} B_{2}^{\prime}+b_{22} B_{2}^{\prime \prime}\right)\right]$
$c_{21}^{(o p)}=\frac{J_{2} \tilde{\mathcal{K}}_{o p}}{2 m_{e} \hbar \omega_{o p}} W^{-3 / 2}\left[N_{o p}\left(b_{11} B_{1}^{\prime \prime}-b_{12} B_{1}^{\prime \prime \prime}\right)+\left(N_{o p}+1\right)\left(b_{11} B_{2}^{\prime \prime}-b_{12} B_{2}^{\prime \prime \prime}\right)\right]$,
$c_{22}^{(o p)}=\frac{J_{2} \tilde{\mathcal{K}}_{o p}}{2 m_{e} \hbar \omega_{o p}} W^{-3 / 2}\left[N_{o p}\left(b_{12} B_{1}^{\prime \prime}-b_{22} B_{1}^{\prime \prime \prime}\right)+\left(N_{o p}+1\right)\left(b_{12} B_{2}^{\prime \prime}-b_{22} B_{2}^{\prime \prime \prime}\right)\right]$.
The coefficients $b_{i j}$ are given by (32) for light and heavy holes and by (33) for the holes in the split-off band. The prime refers to the derivative with respect to λ^{W} while

$$
\begin{align*}
& B_{1}\left(\lambda^{W}\right)=\exp \left(\hbar \omega_{o p} \frac{\lambda^{W}}{2}\right) \frac{\hbar \omega_{o p}}{2 \lambda^{W}} K_{1}\left(\hbar \omega_{o p} \frac{\lambda^{W}}{2}\right), \tag{43}\\
& B_{2}\left(\lambda^{W}\right)=\exp \left(-\hbar \omega_{o p} \lambda^{W}\right) B_{1}\left(\lambda^{W}\right) \tag{44}
\end{align*}
$$

with Γ being the Gamma function, K_{1} the modified Bessel function of second kind of index 1 and

$$
\tilde{\mathcal{K}}_{o p}=\frac{3\left(m_{e}\right)^{3 / 2} \omega_{o p} \sqrt{3 / \pi}}{\hbar^{2}} \mathcal{K}_{o p}
$$

We recall that for the computation of the derivatives of B_{1} and B_{2} the recurrence formulae

$$
K_{n}^{\prime}(z)=\frac{n}{z} K_{n}(z)-K_{n+1}(z), \quad K_{n}^{\prime}(z)=-\frac{n}{z} K_{n}-K_{n-1}(z)
$$

can be used.
In the parabolic case one has

$$
\begin{align*}
& C_{p}^{(o p)}=0 \tag{45}\\
& C_{P}^{i(o p)}=c_{11}^{(o p)} V^{i}+c_{12}^{(o p)} S^{i}, \tag{46}\\
& C_{W}^{(o p)}=\frac{3}{2} \hbar \omega_{o p} \hat{\mathcal{K}}_{o p} W^{-3 / 2}\left[N_{o p} B_{1}-\left(N_{o p}+1\right) B_{2}\right] \tag{47}\\
& C_{S}^{i(o p)}=c_{21}^{(o p)} V^{i}+c_{22}^{(o p)} S^{i} \tag{48}
\end{align*}
$$

where

$$
\begin{aligned}
c_{11}^{(o p)} & =\hat{\mathcal{K}}_{o p} W^{-3 / 2}\left[N_{o p}\left(-b_{11} B_{1}^{\prime}+b_{12} B_{1}^{\prime \prime}\right)+\left(N_{o p}+1\right)\left(-b_{11} B_{2}^{\prime}+b_{12} B_{2}^{\prime \prime}\right)\right] \\
c_{12}^{(o p)} & =\hat{\mathcal{K}}_{o p} W^{-3 / 2}\left[N_{o p}\left(-b_{12} B_{1}^{\prime}+b_{22} B_{1}^{\prime \prime}\right)+\left(N_{o p}+1\right)\left(-b_{12} B_{2}^{\prime}+b_{22} B_{2}^{\prime \prime}\right)\right] \\
c_{21}^{(o p)} & =\frac{\hat{\mathcal{K}}_{o p}}{m_{H}^{*}} W^{-3 / 2}\left[N_{o p}\left(b_{11} B_{1}^{\prime \prime}-b_{12} B_{1}^{\prime \prime \prime}\right)+\left(N_{o p}+1\right)\left(b_{11} B_{2}^{\prime \prime}-b_{12} B_{2}^{\prime \prime \prime}\right)\right] \\
c_{22}^{(o p)} & =\frac{\hat{\mathcal{K}}_{o p}}{m_{H}^{*}} W^{-3 / 2}\left[N_{o p}\left(b_{12} B_{1}^{\prime \prime}-b_{22} B_{1}^{\prime \prime \prime}\right)+\left(N_{o p}+1\right)\left(b_{12} B_{2}^{\prime \prime}-b_{22} B_{2}^{\prime \prime \prime}\right)\right]
\end{aligned}
$$

with $\hat{\mathcal{K}}_{o p}=\frac{8\left(m_{H}^{*}\right)^{3 / 2} \sqrt{3 \pi}}{\hbar^{3}} \mathcal{K}_{o p}$.

7.2. Intra-band acoustic phonon-hole scattering

First of all we observe that by using the principle of detailed balance (5), the moment of the collision term with respect to the weight function $\psi(\mathbf{k})$ can be written as

$$
\begin{align*}
M_{\psi}= & \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \psi(\mathbf{k})\left[P\left(\mathbf{k}^{\prime}, \mathbf{k}\right) f\left(\mathbf{k}^{\prime}\right)-P\left(\mathbf{k}, \mathbf{k}^{\prime}\right) f(\mathbf{k})\right] \mathrm{d} \mathbf{k}^{\prime} \mathrm{d} \mathbf{k} \\
= & \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \psi(\mathbf{k}) P\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\left[f\left(\mathbf{k}^{\prime}\right) e^{\frac{\varepsilon^{\prime}-\varepsilon}{k_{B} T_{L}}}-f(\mathbf{k})\right] \mathrm{d} \mathbf{k}^{\prime} \mathrm{d} \mathbf{k} \\
= & \frac{1}{4} \mathcal{K}_{a c} q\left\{\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} N_{q}\left(1+3 \cos ^{2} \vartheta\right) \delta\left(\mathcal{E}^{\prime}-\mathcal{E}-\hbar \omega_{q}\right)\left[f\left(\mathbf{k}^{\prime}\right) \mathrm{e}^{\frac{\mathcal{E}^{\prime}-\mathcal{E}}{k_{B} T_{L}}}-f(\mathbf{k})\right] \psi(\mathbf{k}) \mathrm{d} \mathbf{k}^{\prime} \mathrm{d} \mathbf{k}\right. \\
& \left.+\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}}\left(N_{q}+1\right)\left(1+3 \cos ^{2} \vartheta\right) \delta\left(\mathcal{E}^{\prime}-\mathcal{E}+\hbar \omega_{q}\right)\left[f\left(\mathbf{k}^{\prime}\right) \mathrm{e}^{\frac{\varepsilon^{\prime}-\varepsilon}{k_{B} T_{L}}}-f(\mathbf{k})\right] \psi(\mathbf{k}) \mathrm{d} \mathbf{k}^{\prime} \mathrm{d} \mathbf{k}\right\} \tag{49}
\end{align*}
$$

By expanding N_{q} in Laurent's series with respect to $\hbar \omega_{q} / k_{B} T_{L}$

$$
N_{q} \simeq \frac{k_{B} T_{L}}{\hbar \omega_{q}}-\frac{1}{2}+\frac{1}{12} \frac{\hbar \omega_{q}}{k_{B} T_{L}}+o\left(\frac{\hbar \omega_{q}}{k_{B} T_{L}}\right)
$$

and by taking into account that the phonon energy can be expressed as

$$
\hbar \omega_{q}=2 v_{s} \sqrt{\frac{m_{e} \mathcal{E}}{D}\left(1-\mathbf{n} \cdot \mathbf{n}^{\prime}\right)}
$$

after a lengthy calculation one gets the following contribution to the production terms due to the acoustic phonon scattering up to first order in $\sqrt{m_{e} v_{s}^{2} / k_{B} T_{L}}$:

$$
\begin{align*}
& C_{p}^{(a c)}=0, \tag{50}\\
& C_{P}^{i(a c)}=c_{11}^{(a c)} V^{i}+c_{12}^{(a c)} S^{i}, \tag{51}\\
& C_{W}^{(a c)}=-8 m_{e} v_{s}^{2} \frac{J_{5}}{J_{1}} \mathcal{K}_{a c}^{\prime} W^{1 / 2}\left(W-\frac{3}{2} k_{B} T_{L}\right), \tag{52}\\
& C_{S}^{i(a c)}=c_{21}^{(a c)} V^{i}+c_{22}^{(a c)} S^{i}, \tag{53}
\end{align*}
$$

where

$$
\begin{aligned}
& c_{11}^{(a c)}=\frac{27}{16 J_{2}} \mathcal{K}_{a c}^{\prime} W^{-3 / 2}\left\{\frac{128 m_{e}^{2} v_{s}^{2}}{81 k_{B} T_{L}}\left(J_{6}-J_{7}\right) W^{3}\right. \\
&+\left(\frac{64 m_{e}^{2} v_{s}^{2} J_{6}}{27}-\frac{256 m_{e}^{2} v_{s}^{2} J_{7}}{27}-\frac{64 m_{e} k_{B} T_{L} J_{8}}{27}\right) W^{2} \\
&\left.+\frac{8 m_{e}^{2} v_{s}^{2} k_{B} T_{L}}{3}\left(8 J_{7}+J_{6}\right) W\right\}, \\
& c_{12}^{(a c)}=\frac{27}{16 J_{2}} \mathcal{K}_{a c}^{\prime} W^{-3 / 2}\left\{\frac{128 m_{e}^{2} v_{s}^{2}}{45 k_{B} T_{L}}\left(J_{7}-J_{6}\right) W^{2}\right. \\
&-\left(\frac{64 m_{e}^{2} v_{s}^{2} J_{6}}{45}-\frac{256 m_{e}^{2} v_{s}^{2} J_{7}}{45}-\frac{64 m_{e} k_{B} T_{L} J_{8}}{45}\right) W \\
&\left.-\frac{8 m_{e}^{2} v_{s}^{2} k_{B} T_{L}}{15}\left(8 J_{7}+J_{6}\right)\right\}, \\
& c_{21}^{(a c)}=\frac{27}{16 J_{2}} \mathcal{K}_{a c}^{\prime} W^{-3 / 2}\left\{\frac{1024 m_{e} v_{s}^{2}}{81 k_{B} T_{L}}\left(J_{9}-J_{10}\right) W^{4}\right. \\
&+\left(\frac{256 m_{e} v_{s}^{2} J_{10}}{9}-\frac{128 m_{e} v_{s}^{2} J_{9}}{27}+\frac{128 k_{B} T_{L} J_{11}}{27}\right) W^{3} \\
&\left.+\frac{32 m_{e} v_{s}^{2} k_{B} T_{L}}{9}\left(8 J_{10}+\frac{J_{9}}{3}\right) W^{2}\right\}, \\
& c_{22}^{(a c)}=\frac{27}{16 J_{2}} \mathcal{K}_{a c}^{\prime} W^{-3 / 2}\left\{\frac{1024 m_{e} v_{s}^{2}}{81 k_{B} T_{L}}\left(J_{10}-J_{9}\right) W^{3}\right. \\
&+\left(\frac{-256 m_{e} v_{s}^{2} J_{10}}{5}+\frac{128 m_{e} v_{s}^{2} J_{9}}{15}-\frac{128 k_{B} T_{L} J_{11}}{15}\right) W^{2} \\
&\left.+\frac{32 m_{e} v_{s}^{2} k_{B} T_{L}}{15}\left(8 J_{10}+\frac{J_{9}}{3}\right) W\right\},
\end{aligned}
$$

with

$$
\begin{equation*}
\mathcal{K}_{a c}^{\prime}=\frac{4 \sqrt{3} m_{e}^{3 / 2}}{9 \pi^{1 / 2} \hbar^{4} v_{s}} K_{a c} \tag{54}
\end{equation*}
$$

$J_{5}, J_{6}, J_{7}, J_{8}, J_{9}, J_{10}, J_{11}$ are defined in the appendix. Their numerical values are reported in table 2.

In the parabolic case one finds

$$
\begin{equation*}
C_{p}^{(a c)}=0 \tag{55}
\end{equation*}
$$

$$
\begin{align*}
& C_{P}^{i(a c)}=c_{11}^{(a c)} V^{i}+c_{12}^{(a c)} S^{i} \tag{56}\\
& C_{W}^{(a c)}=-64 m_{H}^{*} v_{s}^{2} \mathcal{K}_{a c}^{\prime} W^{1 / 2}\left(W-\frac{3}{2} k_{B} T_{L}\right) \tag{57}\\
& C_{S}^{i(a c)}=c_{21}^{(a c)} V^{i}+c_{22}^{(a c)} S^{i} \tag{58}
\end{align*}
$$

where

$$
\begin{aligned}
c_{11}^{(a c)}= & \hat{\mathcal{K}}_{a c} W^{1 / 2}\left\{b_{11}\left[16 k_{B} T_{L} / \lambda_{W}+m_{H}^{*} v_{s}^{2}\left(\frac{164}{15} k_{B} T_{L}-\frac{688}{15} \lambda_{W}^{-1}+\frac{352}{15} \lambda_{W}^{-2} / k_{B} T_{L}\right)\right]\right. \\
& \left.+b_{12} \lambda_{W}^{-1}\left[48 k_{B} T_{L} / \lambda_{W}+m_{H}^{*} v_{s}^{2}\left(\frac{328}{15} k_{B} T_{L}-\frac{688}{5} \lambda_{W}^{-1}+\frac{1408}{15} \lambda_{W}^{-2} / k_{B} T_{L}\right)\right]\right\},
\end{aligned}
$$

$$
c_{12}^{(a c)}=\hat{\mathcal{K}}_{a c} W^{1 / 2}\left\{b_{12}\left[16 k_{B} T_{L} / \lambda_{W}+m_{H}^{*} v_{s}^{2}\left(\frac{164}{15} k_{B} T_{L}-\frac{688}{15} \lambda_{W}^{-1}+\frac{352}{15} \lambda_{W}^{-2} / k_{B} T_{L}\right)\right]\right.
$$

$$
\left.+b_{22} \lambda_{W}^{-1}\left[48 k_{B} T_{L} / \lambda_{W}+m_{H}^{*} v_{s}^{2}\left(\frac{328}{15} k_{B} T_{L}-\frac{688}{5} \lambda_{W}^{-1}+\frac{1408}{15} \lambda_{W}^{-2} / k_{B} T_{L}\right)\right]\right\}
$$

$$
c_{21}^{(a c)}=\frac{2}{3 m_{H}^{*}} \hat{\mathcal{K}}_{a c} W^{3 / 2}\left\{b_{11}\left[48 k_{B} T_{L} / \lambda_{W}+m_{H}^{*} v_{s}^{2}\left(\frac{408}{5} k_{B} T_{L}-\frac{912}{5} \lambda_{W}^{-1}+\frac{1408}{15} \lambda_{W}^{-2} / k_{B} T_{L}\right)\right]\right.
$$

$$
\left.+b_{12} \lambda_{W}^{-1}\left[192 k_{B} T_{L} / \lambda_{W}+m_{H}^{*} v_{s}^{2}\left(\frac{1224}{5} k_{B} T_{L}-\frac{3648}{5} \lambda_{W}^{-1}+\frac{1408}{3} \lambda_{W}^{-2} / k_{B} T_{L}\right)\right]\right\}
$$

$$
c_{22}^{(a c)}=\frac{2}{3 m_{H}^{*}} \hat{\mathcal{K}}_{a c} W^{3 / 2}\left\{b_{12}\left[48 k_{B} T_{L} / \lambda_{W}+m_{H}^{*} v_{s}^{2}\left(\frac{408}{5} k_{B} T_{L}-\frac{912}{5} \lambda_{W}^{-1}+\frac{1408}{15} \lambda_{W}^{-2} / k_{B} T_{L}\right)\right]\right.
$$

$$
\left.+b_{22} \lambda_{W}^{-1}\left[192 k_{B} T_{L} / \lambda_{W}+m_{H}^{*} v_{s}^{2}\left(\frac{1224}{5} k_{B} T_{L}-\frac{3648}{5} \lambda_{W}^{-1}+\frac{1408}{3} \lambda_{W}^{-2} / k_{B} T_{L}\right)\right]\right\}
$$

with

$$
\hat{\mathcal{K}}_{a c}=\frac{4 \sqrt{3 \pi} m_{H}^{* 3 / 2}}{9 \hbar^{4} v_{s}} \mathcal{K}_{a c}
$$

In figures 3 and 4 the coefficients $c_{i j}$'s and the energy relaxation time are plotted.

7.3. Intraband scattering with impurities

In the case of heavy and light holes the contribution to the production term due to the impurities is given by

$$
\begin{align*}
& C_{p}^{(\text {imp })}=0 \tag{59}\\
& C_{P}^{i(\text { (imp })}=c_{11}^{(\text {(imp })} V^{i}+c_{12}^{(\text {(imp })} S^{i} \tag{60}\\
& C_{W}^{(\text {(imp })}=0 \tag{61}\\
& C_{S}^{i(\text { imp })}=c_{21}^{(\text {(imp })} V^{i}+c_{22}^{(\text {(imp })} S^{i} \tag{62}
\end{align*}
$$

where

$$
\left(\begin{array}{ll}
c_{11}^{\text {(imp) }} & c_{12}^{\text {(imp) }} \\
c_{21}^{\text {(imp) }} & c_{22}^{\text {(imp) }}
\end{array}\right)=\left(\begin{array}{ll}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{12} & b_{22}
\end{array}\right)
$$

with
$q_{11}=\frac{2 m_{e} \tilde{\mathcal{K}}_{\text {imp }}}{J_{1}} W^{-3 / 2} \int_{[0, \infty] \times S^{2} \times S^{2}} \alpha_{1}\left(\mathcal{E}, \mathbf{n}, \mathbf{n}^{\prime}\right) \mathrm{e}^{-\lambda_{W} \mathcal{E}} \mathrm{~d} \mathcal{E} \mathrm{~d} \Omega \mathrm{~d} \Omega^{\prime}$,
$q_{12}=\frac{2 m_{e} \tilde{\mathcal{K}}_{\text {imp }}}{J_{1}} W^{-3 / 2} \int_{[0, \infty] \times S^{2} \times S^{\prime 2}} \alpha_{1}\left(\mathcal{E}, \mathbf{n}, \mathbf{n}^{\prime}\right) \mathcal{E} \mathrm{e}^{-\lambda_{W} \mathcal{E}} \mathrm{~d} \mathcal{E}$,
$q_{21}=\frac{\tilde{\mathcal{K}}_{\text {imp }}}{J_{1}} W^{-3 / 2} \int_{[0, \infty] \times S^{2} \times S^{2}} \alpha_{2}\left(\mathcal{E}, \mathbf{n}, \mathbf{n}^{\prime}\right) \mathrm{e}^{-\lambda_{W} \mathcal{E}} \mathrm{~d} \mathcal{E} \mathrm{~d} \Omega \mathrm{~d} \Omega^{\prime}$,
$q_{22}=\frac{\tilde{\mathcal{K}}_{\text {imp }}}{J_{1}} W^{-3 / 2} \int_{[0, \infty] \times S^{2} \times S^{2}} \alpha_{2}\left(\mathcal{E}, \mathbf{n}, \mathbf{n}^{\prime}\right) \mathcal{E} \mathrm{e}^{-\lambda_{W} \mathcal{E}} \mathrm{~d} \mathcal{E} \mathrm{~d} \Omega \mathrm{~d} \Omega^{\prime}$,
$\alpha_{1}\left(\mathcal{E}, \mathbf{n}, \mathbf{n}^{\prime}\right)=\mathcal{E}^{2} \frac{1+3\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}}{\left(\beta^{2}+\frac{4 m_{e} \mathcal{E}\left(1-\mathbf{n} \cdot \mathbf{n}^{\prime}\right)}{\hbar^{2} D(\vartheta, \varphi)}\right)^{2}}\left[T(\vartheta, \varphi) \cos \vartheta-T\left(\vartheta^{\prime}, \varphi^{\prime}\right) \cos \vartheta^{\prime}\right]$

$$
\times D^{-5 / 2}(\vartheta, \varphi) D^{-3 / 2}\left(\vartheta^{\prime}, \varphi^{\prime}\right) \cos \vartheta
$$

$\alpha_{2}\left(\mathcal{E}, \mathbf{n}, \mathbf{n}^{\prime}\right)=\mathcal{E}^{3} \frac{1+3\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}}{\left(\beta^{2}+\frac{4 m_{e} \mathcal{E}\left(1-\mathbf{n} \cdot \mathbf{n}^{\prime}\right)}{\hbar^{2} D(\vartheta, \varphi)}\right)^{2}}\left[T(\vartheta, \varphi) \cos \vartheta-T\left(\vartheta^{\prime}, \varphi^{\prime}\right) \cos \vartheta^{\prime}\right]$

$$
\begin{equation*}
\times D^{-3 / 2}(\vartheta, \varphi) D^{-3 / 2}\left(\vartheta^{\prime}, \varphi^{\prime}\right) T(\vartheta, \varphi) \cos \vartheta \tag{63}
\end{equation*}
$$

$\tilde{\mathcal{K}}_{\text {imp }}=\frac{3}{2 \hbar^{3}} \sqrt{\frac{3 m_{e}}{\pi}} K_{\text {imp }}$.
The integrals appearing in the coefficients $q_{i j}$ can be evaluated by using Gaussian quadrature formulae with respect to energy and iterated standard formulae for simple integral, e.g. Simpson rule.

In the parabolic case one has

$$
\begin{align*}
& C_{p}^{(\text {imp })}=0 \tag{64}\\
& C_{P}^{i(\text { imp })}=c_{11}^{(\text {(imp })} V^{i}+c_{12}^{(\text {(imp })} S^{i} \tag{65}\\
& C_{W}^{(\text {(imp })}=0 \tag{66}\\
& C_{S}^{i(\text { (imp })}=c_{21}^{(\text {(imp) }} V^{i}+c_{22}^{(\text {imp })} S^{i}, \tag{67}
\end{align*}
$$

where

$$
\left(\begin{array}{ll}
c_{11}^{\text {(imp })} & c_{12}^{\text {(imp) }} \\
c_{21}^{\text {(imp) }} & c_{22}^{\text {(imp) }}
\end{array}\right)=\left(\begin{array}{ll}
q_{11} & q_{12} \\
q_{21} & q_{22}
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{12} & b_{22}
\end{array}\right)
$$

with

$$
\begin{aligned}
& q_{11}=\hat{\mathcal{K}}_{\mathrm{imp}} W^{-3 / 2} \int_{0}^{\infty} \Phi(\mathcal{E}) \mathrm{e}^{-\lambda_{W} \mathcal{E}} \mathrm{~d} \mathcal{E} \\
& q_{12}=\hat{\mathcal{K}}_{\mathrm{imp}} W^{-3 / 2} \int_{0}^{\infty} \Phi(\mathcal{E}) \mathcal{E} \mathrm{e}^{-\lambda_{W} \mathcal{E}} \mathrm{~d} \mathcal{E}, \\
& q_{21}=q_{12} / m_{H}^{*}, \\
& q_{22}=\hat{\mathcal{K}}_{\mathrm{imp}} W^{-3 / 2} \int_{0}^{\infty} \Phi(\mathcal{E}) \mathcal{E}^{2} \mathrm{e}^{-\lambda_{W} \mathcal{E}} \mathrm{~d} \mathcal{E}, \\
& \Phi(\mathcal{E})=\log (1+8 a \mathcal{E}) \frac{64 a^{2} \mathcal{E}^{2}+48 a \mathcal{E}+9}{256 a^{2} \mathcal{E}^{2}}-\frac{160 a^{2} \mathcal{E}^{2}+84 a \mathcal{E}+9}{32 a \mathcal{E}(1+8 a \mathcal{E})}
\end{aligned}
$$

$$
\hat{\mathcal{K}}_{\text {imp }}=\frac{\sqrt{3} n_{I} Z^{2} e^{4}}{\pi^{3 / 2} \sqrt{m_{H}^{*}} \epsilon^{2}}, \quad a=\frac{m_{H}^{*}}{\hbar^{2} \beta^{2}}
$$

7.4. Inter-band non-polar optical phonon-hole scattering

For the holes in the A -band $(\mathrm{A}=+,-)$ we get the following expressions for the production terms by taking into account the inter-band scatterings with the holes in the B-band ($\mathrm{B}=-,+$),

$$
\begin{align*}
C_{p}^{(o p)} & =\frac{\tilde{\mathcal{K}}_{o p}}{\hbar \omega_{o p}}\left(\gamma_{1 B}+\gamma_{1 A}\right) \tag{68}\\
C_{P}^{i(o p)} & =c_{11}^{(o p)} V_{A}^{i}+c_{12}^{(o p)} S_{A}^{i} \tag{69}\\
C_{W}^{(o p)} & =\frac{\tilde{\mathcal{K}}_{o p}}{\hbar \omega_{o p}}\left(\gamma_{2 B}+\gamma_{2 A}\right) \tag{70}\\
C_{S}^{i(o p)} & =c_{21}^{(o p)} V_{A}^{i}+c_{22}^{(o p)} S_{A}^{i}, \tag{71}
\end{align*}
$$

where
$\gamma_{1 B}=J_{1}^{A} W_{B}^{-3 / 2} \frac{p_{B}}{p_{A}} B_{1}^{B}\left\{N_{o p} \exp \left[-\hbar \omega_{o p}\left(\lambda_{B}^{W}-\frac{1}{k_{B} T_{L}}\right)\right]+\left(N_{o p}+1\right) \exp \left(-\frac{\hbar \omega_{o p}}{k_{B} T_{L}}\right)\right\}$,
$\gamma_{1 A}=-J_{1}^{B} W_{A}^{-3 / 2} B_{1}^{A}\left[N_{o p}+\left(N_{o p}+1\right) \exp \left(-\hbar \omega_{o p} \lambda_{A}^{W}\right)\right]$,
$\gamma_{2 B}=-J_{1}^{A} W_{B}^{-3 / 2} \frac{p_{B}}{p_{A}}\left\{N_{o p} \exp \left[-\hbar \omega_{o p}\left(\lambda_{B}^{W}-\frac{1}{k_{B} T_{L}}\right)\right]\left(B_{1}^{B}\right)^{\prime}\right.$

$$
\left.+\left(N_{o p}+1\right) \exp \left[\hbar \omega_{o p}\left(\lambda_{B}^{W}-\frac{1}{k_{B} T_{L}}\right)\right]\left(B_{2}^{B}\right)^{\prime}\right\}
$$

$\left.\gamma_{2 A}=J_{1}^{B} W_{A}^{-3 / 2}\left[N_{o p}\left(B_{1}^{A}\right)^{\prime}+\left(N_{o p}+1\right)\left(B_{2}^{A}\right)^{\prime}\right)\right]$,
$c_{11}^{(o p)}=\frac{J_{3}^{A} J_{1}^{B} \tilde{\mathcal{K}}_{o p}}{2 J_{1}^{A} \hbar \omega_{o p}} W_{A}^{-3 / 2}\left[N_{o p}\left(-b_{11}^{A}\left(B_{1}^{A}\right)^{\prime}+b_{12}^{A}\left(B_{1}^{A}\right)^{\prime \prime}\right)+\left(N_{o p}+1\right)\left(-b_{11}^{A}\left(B_{2}^{A}\right)^{\prime}+b_{12}^{A}\left(B_{2}^{A}\right)^{\prime \prime}\right)\right]$,
$c_{12}^{(o p)}=\frac{J_{3}^{A} J_{1}^{B} \tilde{\mathcal{K}}_{o p}}{2 J_{1}^{A} \hbar \omega_{o p}} W_{A}^{-3 / 2}\left[N_{o p}\left(-b_{12}^{A}\left(B_{1}^{A}\right)^{\prime}+b_{22}^{A}\left(B_{1}^{A}\right)^{\prime \prime}\right)+\left(N_{o p}+1\right)\left(-b_{12}^{A}\left(B_{2}^{A}\right)^{\prime}+b_{22}^{A}\left(B_{2}^{A}\right)^{\prime \prime}\right)\right]$,
$c_{21}^{(o p)}=\frac{J_{2}^{A} J_{1}^{B} \tilde{\mathcal{K}}_{o p}}{2 J_{1}^{A} m_{e} \hbar \omega_{o p}} W_{A}^{-3 / 2}\left[N_{o p}\left(b_{11}^{A}\left(B_{1}^{A}\right)^{\prime \prime}-b_{12}^{A}\left(B_{1}^{A}\right)^{\prime \prime \prime}\right)+\left(N_{o p}+1\right)\left(b_{11}^{A}\left(B_{2}^{A}\right)^{\prime \prime}-b_{12}^{A}\left(B_{2}^{A}\right)^{\prime \prime \prime}\right)\right]$,
$c_{22}^{(o p)}=\frac{J_{2}^{A} J_{1}^{B} \tilde{\mathcal{K}}_{o p}}{2 J_{1}^{A} m_{e} \hbar \omega_{o p}} W_{A}^{-3 / 2}\left[N_{o p}\left(b_{12}^{A}\left(B_{1}^{A}\right)^{\prime \prime}-b_{22}^{A}\left(B_{1}^{A}\right)^{\prime \prime \prime}\right)+\left(N_{o p}+1\right)\left(b_{12}^{A}\left(B_{2}^{A}\right)^{\prime \prime}-b_{22}^{A}\left(B_{2}^{A}\right)^{\prime \prime \prime}\right)\right]$.
Here B_{i}^{A} and B_{i}^{B} are the functions appearing in (43), (44) with the energy Lagrangian multiplier λ^{W} equals to $\lambda_{A}^{W}=\frac{3}{2 W_{A}}$ and $\lambda_{B}^{W}=\frac{3}{2 W_{B}}$ respectively. Moreover $b_{i j}^{A}$ are the functions $b_{i j}$ appearing in (30), (31) relative to the A-band.

7.5. Inter-band acoustic phonon-hole scattering

One gets the following contribution to the production terms due to the acoustic phonon scattering up to first order in $\sqrt{m_{e} v_{s}^{2} / k_{B} T_{L}}$ with a meaning of the symbols similar to that of the previous subsection:

$$
\begin{equation*}
C_{p}^{(a c)}=\frac{3}{2} \mathcal{K}_{a c}^{\prime}\left(\zeta_{1 A}+\zeta_{1 B}\right) \tag{72}
\end{equation*}
$$

$$
\begin{align*}
& C_{P}^{i(a c)}=c_{11 A}^{(a c)} V_{A}^{i}+c_{12 A}^{(a c)} S_{A}^{i}+c_{11 B}^{(a c)} V_{B}^{i}+c_{12 B}^{(a c)} S_{B}^{i} \tag{73}\\
& C_{W}^{(a c)}=\frac{3}{2} \mathcal{K}_{a c}^{\prime}\left(\zeta_{2 A}+\zeta_{2 B}\right) \tag{74}\\
& C_{S}^{i(a c)}=c_{21 A}^{(a c)} V_{A}^{i}+c_{22 A}^{(a c)} S_{A}^{i}+c_{21 B}^{(a c)} V_{B}^{i}+c_{22 B}^{(a c)} S_{B}^{i}, \tag{75}
\end{align*}
$$

where

$$
\begin{aligned}
& \zeta_{1 B}= \frac{p_{B}}{p_{A} J_{1}^{B}} k_{B} T_{L} I_{1} W_{B}^{1 / 2}, \\
& \zeta_{1 A}=-\frac{1}{J_{1}^{A}} k_{B} T_{L} I_{1} W_{A}^{1 / 2}, \\
& \zeta_{2 B}= \frac{p_{B}}{p_{A} J_{1}^{B}}\left[\frac{64 m_{e} v_{s}^{2} I_{3}}{81 k_{B} T_{L}} W_{B}^{5 / 2}-\left(\frac{160}{27} m_{e} v_{s}^{2} I_{3}-\frac{32}{27} k_{B} T_{L} I_{1}\right) W_{B}^{3 / 2}+\frac{20}{3} m_{e} v_{s}^{2} I_{3} k_{B} T_{L} W_{B}^{1 / 2}\right], \\
& \zeta_{2 A}= \frac{1}{J_{1}^{A}}\left[-\frac{64 m_{e} v_{s}^{2} I_{3}}{81 k_{B} T_{L}} W_{A}^{5 / 2}+\left(\frac{32}{27} m_{e} v_{s}^{2} I_{3}-\frac{32}{27} k_{B} T_{L} I_{1}\right) W_{A}^{3 / 2}+\frac{4}{9} m_{e} v_{s}^{2} I_{3} k_{B} T_{L} W_{A}^{1 / 2}\right], \\
& c_{11 A}^{(a c)}= \frac{27}{16 J_{2}^{A}} \mathcal{K}_{a c}^{1} W_{A}^{-3 / 2}\left\{\frac{128 m_{e}^{2} v_{s}^{2}}{81 k_{B} T_{L}} I_{4} W_{A}^{3}+\left(\frac{64 m_{e}^{2} v_{s}^{2} I_{4}}{27}-\frac{64 m_{e} k_{B} T_{L} I_{5}}{27}\right) W_{A}^{2}\right. \\
&\left.\quad+\frac{8 m_{e}^{2} v_{s}^{2} k_{B} T_{L}}{3} I_{4} W_{A}\right\}, \\
& c_{11 B}^{(a c)}=\left.\frac{27 p_{B}}{16 p_{A} J_{2}^{B}} \mathcal{K}_{a c}^{\prime} W_{B}^{-3 / 2}\left\{-\frac{128 m_{e}^{2} v_{s}^{2}}{81 k_{B} T_{L}} I_{6} W_{B}^{3}-\frac{256 m_{e}^{2} v_{s}^{2}}{27} I_{6} W_{B}^{2}+\frac{64 m_{e}^{2} v_{s}^{2} k_{B} T_{L}}{3} I_{6}\right) W_{B}\right\}, \\
& c_{12 A}^{(a c)}= \frac{27}{16 J_{2}^{A}} \mathcal{K}_{a c}^{\prime} W_{A}^{-3 / 2}\left\{-\frac{128 m_{e}^{2} v_{s}^{2}}{45 k_{B} T_{L}} I_{4} W_{A}^{2}+\left(\frac{64 m_{e}^{2} v_{s}^{2} I_{4}}{45}-\frac{64 m_{e} k_{B} T_{L} I_{5}}{45}\right) W_{A}\right. \\
&\left.\quad-\frac{8 m_{e}^{2} v_{s}^{2} k_{B} T_{L}}{15} I_{4}\right\},
\end{aligned}
$$

$$
c_{12 B}^{(a c)}=\frac{27 p_{B}}{16 p_{A} J_{2}^{B}} \mathcal{K}_{a c}^{\prime} W_{B}^{-3 / 2}\left\{\frac{128 m_{e}^{2} v_{s}^{2}}{45 k_{B} T_{L}} I_{6} W_{B}^{2}-\frac{256 m_{e}^{2} v_{s}^{2}}{45} I_{6} W_{B}-\frac{64 m_{e}^{2} v_{s}^{2} k_{B} T_{L}}{15} I_{6}\right\}
$$

$$
c_{21 A}^{(a c)}=\frac{27}{16 J_{2}^{A}} \mathcal{K}_{a c}^{\prime} W_{A}^{-3 / 2}\left\{\frac{1024 m_{e} v_{s}^{2}}{81 k_{B} T_{L}} I_{7} W_{A}^{4}+\left(-\frac{128 m_{e} v_{s}^{2} I_{7}}{27}+\frac{128 k_{B} T_{L} I_{8}}{27}\right) W_{A}^{3}\right.
$$

$$
\left.+\frac{32 m_{e} v_{s}^{2} k_{B} T_{L}}{27} I_{7} W_{A}^{2}\right\}
$$

$$
c_{21 B}^{(a c)}=\frac{27 p_{B}}{16 p_{A} J_{2}^{B}} \mathcal{K}_{a c}^{\prime} W_{B}^{-3 / 2}\left\{-\frac{1024 m_{e} v_{s}^{2}}{81 k_{B} T_{L}} I_{2} W_{B}^{4}+\frac{256 m_{e} v_{s}^{2}}{9} I_{2} W_{B}^{3}+\frac{256 m_{e} v_{s}^{2} k_{B} T_{L}}{9} I_{2} W_{B}^{2}\right\},
$$

$$
c_{22 A}^{(a c)}=\frac{27}{16 J_{2}^{A}} \mathcal{K}_{a c}^{\prime} W_{A}^{-3 / 2}\left\{-\frac{1024 m_{e} v_{s}^{2}}{81 k_{B} T_{L}} I_{7} W_{A}^{3}+\left(\frac{128 m_{e} v_{s}^{2}}{15} I_{7}-\frac{128 k_{B} T_{L}}{15} I_{8}\right) W_{A}^{2}\right.
$$

$$
\left.+\frac{32 m_{e} v_{s}^{2} k_{B} T_{L}}{45} I_{7} W_{A}\right\}
$$

$$
c_{22 B}^{(a c)}=\frac{27 p_{B}}{16 p_{A} J_{2}^{B}} \mathcal{K}_{a c}^{\prime} W_{B}^{-3 / 2}\left\{\frac{1024 m_{e} v_{s}^{2}}{81 k_{B} T_{L}} I_{2} W_{B}^{3}-\frac{256 m_{e} v_{s}^{2}}{5} I_{2} W_{B}^{2}+\frac{256 m_{e} v_{s}^{2} k_{B} T_{L}}{15} I_{2} W_{B}\right\} .
$$

The integrals I_{j} are defined in the appendix where their numerical values are also reported.

7.6. Inter-band scattering with impurities

The contribution to the production terms due to the inter-band scattering with impurities is given by

$$
\begin{align*}
& C_{p}^{(\mathrm{imp})}=2 m_{e} \tilde{K}_{\mathrm{imp}}\left(r_{1 B} W_{B}^{-3 / 2}+r_{1 A} W_{A}^{-3 / 2}\right) \tag{76}\\
& C_{P}^{i(\mathrm{imp})}=\left(c_{11 A}^{(\text {imp })} V_{A}^{i}+c_{12 A}^{(\text {imp })} S_{A}^{i}\right) W_{A}^{-3 / 2}+\left(c_{11 B}^{(\mathrm{imp})} V_{B}^{i}+c_{12 B}^{(\mathrm{imp})} S_{B}^{i}\right) W_{B}^{-3 / 2} \tag{77}\\
& C_{W}^{(\mathrm{imp})}=2 m_{e} \tilde{K}_{\mathrm{imp}}\left(r_{2 B} W_{B}^{-3 / 2}+r_{2 A} W_{A}^{-3 / 2}\right) \tag{78}\\
& C_{S}^{i(\mathrm{imp})}=\left(c_{21 A}^{(\mathrm{imp})} V_{A}^{i}+c_{22 A}^{(\mathrm{imp})} S_{A}^{i}\right) W_{A}^{-3 / 2}+\left(c_{21 B}^{(\mathrm{imp})} V_{B}^{i}+c_{22 B}^{(\mathrm{imp})} S_{B}^{i}\right) W_{B}^{-3 / 2}, \tag{79}
\end{align*}
$$

where for $X=A, B$

$$
\begin{aligned}
& \left(\begin{array}{ll}
c_{11 X}^{\text {(imp) }} & c_{12 X}^{\text {(imp) }} \\
c_{21 X}^{\text {(imp) }} & c_{22 X}^{\text {(imp) }}
\end{array}\right)=\left(\begin{array}{ll}
q_{11 X} & q_{12 X} \\
q_{21 X} & q_{22 X}
\end{array}\right)\left(\begin{array}{ll}
b_{11 X} & b_{12 X} \\
b_{12 X} & b_{22 X}
\end{array}\right) \\
& r_{1 B}=\frac{p_{B}}{p_{A} J_{1}^{B}} \int_{[0, \infty] \times S^{2} \times S^{2}} \mathcal{E}_{\mathcal{A}} \alpha_{3}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{B} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& r_{1 A}=-\frac{1}{J_{1}^{A}} \int_{[0, \infty] \times S^{2} \times S^{\prime 2}} \mathcal{E}_{\mathcal{A}} \alpha_{3}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{A} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& r_{2 B}=\frac{p_{B}}{p_{A} J_{1}^{B}} \int_{[0, \infty] \times S^{2} \times S^{\prime}} \mathcal{E}_{\mathcal{A}}{ }^{2} \alpha_{3}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{B} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& r_{2 A}=-\frac{1}{J_{1}^{A}} \int_{[0, \infty] \times S^{2} \times S^{\prime}} \mathcal{E}_{\mathcal{A}}{ }^{2} \alpha_{3}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{A} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& q_{11 A}=\frac{2 m_{e} \tilde{K}_{\text {imp }}}{J_{1}^{A}} \int_{[0, \infty] \times S^{2} \times S^{2}} \alpha_{1 A}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{A} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& q_{11 B}=\frac{2 m_{e} \tilde{K}_{\text {imp }}}{J_{1}^{B}} \frac{p_{B}}{p_{A}} \int_{[0, \infty] \times S^{2} \times S^{2}} \alpha_{1 B}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{B} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& q_{12 A}=\frac{2 m_{e} \tilde{K}_{\text {imp }}}{J_{1}^{A}} \int_{[0, \infty] \times S^{2} \times S^{2}} \mathcal{E}_{\mathcal{A}} \alpha_{1 A}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{A} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& q_{12 B}=\frac{2 m_{e} \tilde{K}_{\text {imp }}}{J_{1}^{B}} \frac{p_{A}}{p_{B}} \int_{[0, \infty] \times S^{2} \times S^{2}} \mathcal{E}_{\mathcal{A}} \alpha_{1 B}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{A} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& q_{21 A}=\frac{\tilde{K}_{\text {imp }}}{J_{1}^{A}} \int_{[0, \infty] \times S^{2} \times S^{2}} \alpha_{2 A}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{A} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& q_{21 B}=\frac{\tilde{K}_{\text {imp }}}{J_{1}^{B}} \frac{p_{B}}{p_{A}} \int_{[0, \infty] \times S^{2} \times S^{2}} \alpha_{2 B}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{B} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& q_{22 A}=\frac{\tilde{K}_{\text {imp }}}{J_{1}^{A}} \int_{[0, \infty] \times S^{2} \times S^{2}} \mathcal{E}_{\mathcal{A}} \alpha_{2 A}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{A} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& q_{22 B}=\frac{\tilde{K}_{\text {imp }}}{J_{1}^{B}} \frac{p_{B}}{p_{A}} \int_{[0, \infty] \times S^{2} \times S^{2}} \mathcal{E}_{\mathcal{A}} \alpha_{2 B}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}^{\prime}\right) \mathrm{e}^{-\lambda_{W}^{B} \mathcal{E}_{\mathcal{A}}} \mathrm{d} \mathcal{E}_{\mathcal{A}} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime} . \\
& \alpha_{1 A}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)=\mathcal{E}_{\mathcal{A}}{ }^{2} \frac{3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)^{2}}{\left(\beta^{2}+\frac{4 m_{\mathcal{E}} \mathcal{E}^{\prime}\left(1-\mathbf{n}_{A} \cdot \mathbf{n}_{\mathbf{B}}\right)}{\hbar^{2} D_{A}\left(\vartheta_{A}, \varphi_{A}\right)}\right)^{2}} T_{A}\left(\vartheta_{A}, \varphi_{A}\right) D_{A}^{-5 / 2}\left(\vartheta_{A}, \varphi_{A}\right) \\
& \times D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right) \cos ^{2} \vartheta_{A},
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{1 B}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)=-\mathcal{E}_{\mathcal{A}}{ }^{2} \frac{3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)^{2}}{\left(\beta^{2}+\frac{4 m_{e} \mathcal{E}_{A}\left(1-\mathbf{n}_{A} \cdot \mathbf{n}^{\prime}\right)}{\hbar^{2} D_{A}\left(\vartheta_{A}, \varphi_{A}\right)}\right)^{2}} T_{B}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right) D_{A}^{-5 / 2}\left(\vartheta_{A}, \varphi_{A}\right) \\
& \times D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right) \cos \vartheta_{A} \cos \vartheta_{B}^{\prime}, \\
& \alpha_{2 A}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)=\mathcal{E}_{\mathcal{A}}{ }^{3} \frac{3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)^{2}}{\left(\beta^{2}+\frac{4 m_{\mathcal{E}} \mathcal{E}_{A}\left(1-\mathbf{n}_{A} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)}{\hbar^{2} D_{A}\left(\vartheta_{A}, \varphi_{A}\right)}\right)^{2}} T_{A}^{2}\left(\vartheta_{A}, \varphi_{A}\right) D_{A}^{-3 / 2}\left(\vartheta_{A}, \varphi_{A}\right) \\
& \times D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right) \cos ^{2} \vartheta_{A}, \\
& \alpha_{2 B}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)=-\mathcal{E}_{\mathcal{A}}{ }^{3} \frac{3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)^{2}}{\left(\beta^{2}+\frac{4 m_{\mathcal{E}}\left(1-\mathbf{E}_{A} \cdot \mathbf{n}_{\mathbf{A}}\right)}{\hbar^{2} D_{A}\left(\vartheta_{A}, \varphi_{A}\right)}\right)^{2}} T_{A}\left(\vartheta_{A}, \varphi_{A}\right) T_{B}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right) \\
& \times D_{A}^{-3 / 2}\left(\vartheta_{A}, \varphi_{A}\right) D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right) \cos \vartheta_{A} \cos \vartheta_{B}^{\prime}, \\
& \alpha_{3}\left(\mathcal{E}_{\mathcal{A}}, \mathbf{n}_{\mathbf{A}}, \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)=\frac{3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)^{2}}{\left(\beta^{2}+\frac{4 m_{e} \mathcal{E}_{A}\left(1-\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{\prime}}{ }^{\prime}\right)}{\hbar^{2} D_{A}\left(\vartheta_{A}, \varphi_{A}\right)}\right)^{2}} D_{A}^{-3 / 2}\left(\vartheta_{A}, \varphi_{A}\right) D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right) .
\end{aligned}
$$

7.7. Generation-recombination terms

Here only the productions for holes are written. Of course similar terms must be also considered for electrons. However the latter ones can be easily obtained with a similar procedure.

At variance with the other scatterings, the density of each population of holes is no longer conserved, but we have
$C_{p}^{(G R)}=-\Gamma_{H}\left(p^{2} n-p n_{i}^{2}\right)-\Gamma_{\bar{A}}\left(n^{2} p-n n_{i}^{2}\right)+\frac{n p-n_{i}^{2}}{\tau_{h}\left(n+n_{i}\right)+\tau_{e}\left(p+n_{i}\right)}$.
For the other production terms, one finds
$C_{P}^{i(G R)}=-\Gamma_{H} p^{2} n P_{H}^{i}-\Gamma_{\bar{A}} n^{2} p P_{e}^{i}+\frac{n p P_{H}^{i}}{\tau_{h}\left(n+n_{i}\right)+\tau_{e}\left(p+n_{i}\right)}$
$C_{W}^{(G R)}=-\Gamma_{H}\left(p^{2} n W-p n_{i}^{2} W_{0}\right)-\Gamma_{\bar{A}}\left(n^{2} p W_{e}-n n_{i}^{2} W_{0}\right)+\frac{n p W-n_{i}^{2} W_{0}}{\tau_{h}\left(n+n_{i}\right)+\tau_{e}\left(p+n_{i}\right)}$
$C_{S}^{i(G R)}=-\Gamma_{H} p^{2} n S_{H}^{i}-\Gamma_{\bar{A}} n^{2} p S_{e}^{i}+\frac{n p S_{H}^{i}}{\tau_{h}\left(n+n_{i}\right)+\tau_{e}\left(p+n_{i}\right)}$,
where W_{e} is the electron energy, P_{e}^{i} is the electron average crystal momentum, S_{e}^{i} is the electron energy flux and $W_{0}=\frac{3}{2} k_{B} T_{L}$ is the crystal energy.

8. Energy-transport and drift-diffusion limit models

Macroscopic models, simpler than the hydrodynamical ones but widely used in simulations, are represented by the so-called energy transport models, which are constituted by two balance equations: one for the density and the other for the energy. Starting from the energy-transport model in the isothermal limit one recovers the drift-diffusion models and an expression of the hole mobility based on MEP.

In principle on account of the coupling between electron and holes by means of the generation-recombination terms, the energy-transport model should comprise also the analogous equations for the electrons. However the typical time for the recombination generation interaction is much longer (about a nanosecond) than those of the hole-phonon

Figure 3. Coefficients $c_{i j}$ versus energy for heavy (continuous line) and light (dashed line) warped bands and for the parabolic band (dashed-dot line) in the intra-band case, neglecting scattering with impurities.
scattering (a fraction of picosecond). Therefore in situation where the characteristic time is of few picoseconds, e.g. simulation of MOSFETs, the generation-recombination terms can be neglected and the constitutive relations for holes and electrons decouple. This approximation will be assumed in the present section. Moreover for the sake of simplicity we consider only intra-band scatterings. Inter-band scatterings can be included in a straightforward way.

First we rewrite the hydrodynamical model for holes in the form
$\frac{\partial p_{H}}{\partial t}+\frac{\partial\left(p_{H} V_{H}^{i}\right)}{\partial x^{i}}=0$,
$\frac{\partial\left(p_{H} P_{H}^{j}\right)}{\partial t}+\frac{\partial\left(p_{H} U_{H}^{i j}\right)}{\partial x^{j}}-e p_{H} E^{j}=p_{H}\left[\left(c_{11}\left(W_{H}\right) V_{H}^{i}+c_{12}\left(W_{H}\right) S_{H}^{i}\right]\right.$,

Figure 4. Energy relaxation time as function of the energy W for heavy (continuous line) and light (dashed line) warped bands, and the parabolic band (dashed-dot line) as in figure 3.
$\frac{\partial p_{H} W_{H}}{\partial t}+\frac{\partial\left(p_{H} S_{H}^{i}\right)}{\partial x^{i}}-e p_{H} E^{i} V_{H}^{i}=-p_{H} \frac{W_{H}-W_{0}}{\tau_{W_{H}}}$,
$\frac{\partial\left(p_{H} S^{j}\right)}{\partial t}+\frac{\partial\left(p_{H} F_{H}^{i j}\right)}{\partial x^{i}}-e p_{H} E^{i} G_{H}^{j i}=p_{H}\left[c_{21}\left(W_{H}\right) V_{H}^{i}+c_{22}\left(W_{H}\right) S_{H}^{i}\right]$,
with $W_{0}=3 / 2 k_{B} T_{L}$ and with an obvious meaning for $\tau_{W_{H}}$ (the energy relaxation time), $c_{11}\left(W_{H}\right), c_{12}\left(W_{H}\right), c_{21}\left(W_{H}\right), c_{22}\left(W_{H}\right)$.

As in [32] let us assume that the following scaling:

$$
\begin{align*}
& t=\mathcal{O}\left(\frac{1}{\delta^{2}}\right), \tag{88a}\\
& \tau_{W}=\mathcal{O}\left(\frac{1}{\delta^{2}}\right), \tag{88b}\\
& x^{i}=\mathcal{O}\left(\frac{1}{\delta}\right), \tag{88c}\\
& \mathbf{V}_{H}=\mathcal{O}(\delta) \tag{88d}\\
& \mathbf{S}_{H}=\mathcal{O}(\delta) \tag{88e}
\end{align*}
$$

holds.
The first condition is a long-time scaling that is almost stationary regime. The second one means that the energy relaxation time must be sufficiently long with respect to the typical time of the transient. (88a) is the typical diffusion scaling, while ($88 d$), ($88 e$) are consistent with the expansion made to get the closure relations. Under the conditions (88), equating to zero
at the various order in δ the terms appearing in the balance equations one gets the following compatibility conditions:

$$
\begin{align*}
& \frac{\partial p_{H}}{\partial t}+\frac{\partial\left(p_{H} V_{H}^{i}\right)}{\partial x^{i}}=0 \tag{89}\\
& \frac{\partial\left(p_{H} V_{H}^{i}\right)}{\partial t}=0, \quad \frac{\partial\left(p_{H} S_{H}^{i}\right)}{\partial t}=0 \tag{90}\\
& \frac{\partial\left(p_{H} U_{H}^{i j}\right)}{\partial x^{j}}-e p_{H} E^{i}-c_{11} p_{H} V_{H}^{i}-c_{12} p_{H} S_{H}^{i}=0 \tag{91}\\
& \frac{\partial\left(p_{H} W_{H}\right)}{\partial t}+\frac{\partial\left(p_{H} S_{H}^{i}\right)}{\partial x^{i}}-e p_{H} E^{i} V_{H}^{i}+p_{H} \frac{W_{H}-W_{0}}{\tau_{W_{H}}}=0 \tag{92}\\
& \frac{\partial\left(p_{H} F_{H}^{i j}\right)}{\partial x^{i}}-e p_{H} E^{i} G_{H}^{i j}-c_{21} p_{H} V_{H}^{i}-c_{22} p_{H} S_{H}^{i}=0 \tag{93}
\end{align*}
$$

Equations (91) and (93) are a linear system for \mathbf{V}_{H} and \mathbf{S}_{H} whose solution is

$$
\begin{align*}
& \mathbf{V}_{H}=D_{11}\left(W_{H}\right) \nabla \log p_{H}+D_{12}\left(W_{H}\right) \nabla W_{H}+D_{13}\left(W_{H}\right) \nabla \phi, \tag{94}\\
& \mathbf{S}_{H}=D_{21}\left(W_{H}\right) \nabla \log p_{H}+D_{22}\left(W_{H}\right) \nabla W_{H}+D_{23}\left(W_{H}\right) \nabla \phi . \tag{95}
\end{align*}
$$

The elements of the diffusion matrix $D=\left(D_{i j}\right)$ read
$\begin{array}{ll}D_{11}=\frac{\frac{2}{3} c_{22} W_{H}-\frac{5 J_{2}}{6 J_{1}} c_{12} \frac{W_{H}^{2}}{m_{e}}}{c_{11} c_{22}-c_{12} c_{21}}, & D_{12}=\frac{\frac{2}{3} c_{22}-\frac{10 J_{2}}{6 J_{1}} c_{12} \frac{W_{H}}{m_{e}}}{c_{11} c_{22}-c_{12} c_{21}}, \\ D_{21}=\frac{\frac{5 J_{2}}{6 J_{1}} c_{11} \frac{W_{H}^{2}}{m_{e}}-\frac{2}{3} c_{21} W_{H}}{c_{11} c_{22}-c_{12} c_{21}}, & D_{22}=\frac{\frac{c_{22}-\frac{J_{4}}{2 J_{1}} c_{12} \frac{W_{H}}{m_{e}}}{c_{11} c_{22}-c_{12} c_{21}},}{c_{11} c_{11} \frac{W_{H}}{m_{e}}-\frac{2}{3} c_{21}}, \\ c_{12} c_{21}\end{array} \quad D_{23}=-e \frac{c_{21}-\frac{J_{4}}{2 J_{1}} c_{11} \frac{W_{H}}{m_{e}}}{c_{11} c_{22}-c_{12} c_{21}}$.
The balance equations for density and energy (89) and (93) closed with the relations (94), (95) are the energy-transport model for holes based on MEP. From this latter a drift-diffusion model is obtained as isothermal limit formally setting $\tau_{W_{H}} \mapsto 0$,

$$
\begin{align*}
& \mathbf{J}_{H}=p_{H} \mathbf{V}_{H}=D_{11}\left(W_{0}\right) \nabla p_{H}+p_{H} D_{13}\left(W_{0}\right) \nabla \phi \tag{96}\\
& \frac{\partial p_{H}}{\partial t}+\nabla \cdot \mathbf{J}_{H}=0 \tag{97}
\end{align*}
$$

By comparing (96) with the expression of \mathbf{J} in the form

$$
\mathbf{J}=-D_{p} \nabla p_{H}-\mu_{p 0} p_{H} \nabla \phi
$$

one can identify the diffusivity coefficient D_{p} and the low field mobility $\mu_{p 0}$ as

$$
\begin{equation*}
D_{p}=-D_{11}\left(W_{0}\right), \quad \mu_{p 0}=-D_{13}\left(W_{0}\right) \tag{98}
\end{equation*}
$$

One observes that

$$
\begin{equation*}
D_{p}=\mu_{p 0} \frac{2 W_{0}}{3 e}=\mu_{p 0} \frac{k_{B} T_{L}}{e} \tag{99}
\end{equation*}
$$

which is the Einstein relation.

9. Simulations in the bulk case

Here we simulate the case of bulk silicon by taking into account heavy and light holes, which in this section will be denoted by the H and L subscript. The stationary solution is obtained as asymptotic limit of the time-dependent problem. The only non-trivial contribution is along the direction of the electric field which enters into the equation as a parameter. In fact the Poisson equation is solved taking the sum of light and heavy holes equals to the doping concentration and a linear electrostatic potential.

In the homogeneous case, with obvious meaning of the symbols, the hydrodynamical model reads

$$
\begin{align*}
& \frac{\mathrm{d} p_{H}}{\mathrm{~d} t}=p_{H} C_{H H}\left(W_{H}\right)+p_{L} C_{H L}\left(W_{L}\right) \tag{100}\\
& \frac{\mathrm{d}\left(p_{H} m_{H}^{*} V_{H}\right)}{\mathrm{d} t}-p_{H} e E=p_{H} C_{P_{H H}}\left(W_{H}\right)+p_{L} C_{P_{H L}}\left(W_{L}\right), \tag{101}\\
& \frac{\mathrm{d}\left(p_{H} W_{H}\right)}{\mathrm{d} t}-p_{H} e E V_{H}=p_{H} C_{W_{H H}}\left(W_{H}\right)+p_{L} C_{W_{H L}}\left(W_{L}\right), \tag{102}\\
& \frac{\mathrm{d}\left(p_{H} S_{H}\right)}{\mathrm{d} t}-p_{H} e E G_{H}=p_{H} C_{S_{H H}}\left(W_{H}\right)+p_{L} C_{S_{H L}}\left(W_{L}\right) \tag{103}\\
& \frac{\mathrm{d} p_{L}}{\mathrm{~d} t}=p_{L} C_{L L}\left(W_{L}\right)+p_{H} C_{L H}\left(W_{H}\right) \tag{104}\\
& \frac{\mathrm{d}\left(p_{L} m_{L}^{*} V_{L}\right)}{\mathrm{d} t}-p_{L} e E=p_{L} C_{P_{L L}}\left(W_{L}\right)+p_{H} C_{P_{L H}}\left(W_{H}\right), \tag{105}\\
& \frac{\mathrm{d}\left(p_{L} W_{L}\right)}{\mathrm{d} t}-p_{L} e E V_{L}=p_{L} C_{W_{L L}}\left(W_{L}\right)+p_{H} C_{W_{L H}}\left(W_{H}\right), \tag{106}\\
& \frac{\mathrm{d}\left(p_{L} S_{L}\right)}{\mathrm{d} t}-p_{L} e E G_{L}=p_{L} C_{S_{L L}}\left(W_{L}\right)+p_{H} C_{S_{L H}}\left(W_{H}\right) \tag{107}
\end{align*}
$$

Since the total hole density $p_{H}+p_{L}$ is conserved, the following semi-implicit Euler numerical scheme is adopted for the system (100)-(107). We remark that a very stringent stability condition arises if an explicit method is employed, due to the different charge concentration between the heavy and light holes.

By denoting with the superscript n the quantities evaluated at the time t^{n} and with Δt the time step $t^{n+1}-t^{n}$, we first advance in time the density, discretizing the balance equation for the densities with all variables but p_{H} and p_{L} frozen at the time step t^{n},

$$
\begin{align*}
& p_{H}^{n+1}+p_{L}^{n+1}=p_{H}^{n}+p_{L}^{n} \tag{108}\\
& p_{H}^{n+1}-p_{H}^{n}=\Delta t\left[p_{H}^{n+1} C_{H H}\left(W_{H}^{n}\right)-p_{L}^{n+1} C_{H L}\left(W_{L}^{n}\right)\right] \tag{109}
\end{align*}
$$

and then the energies at the next time are obtained,
$W_{H}^{n+1}=\frac{p_{H}^{n}}{p_{H}^{n+1}} W_{H}^{n}+\frac{p_{L}^{n+1}}{p_{H}^{n+1}} C_{W_{H L}}\left(W_{L}^{n}\right) \Delta t+\frac{p_{H}^{n}}{p_{H}^{n+1}} C_{W_{H H}}\left(W_{H}^{n}\right) \Delta t+e E V_{H}^{n} \Delta t$,
$W_{L}^{n+1}=\frac{p_{L}^{n}}{p_{L}^{n+1}} W_{L}^{n}+\frac{p_{H}^{n+1}}{p_{L}^{n+1}} C_{W_{L H}}\left(W_{H}^{n}\right) \Delta t+\frac{p_{L}^{n}}{p_{L}^{n+1}} C_{W_{L L}}\left(W_{L}^{n}\right) \Delta t+e E V_{L}^{n} \Delta t$.

Figure 5. Ratio of the densities versus the electric field.
Once $p_{H}^{n+1}, p_{L}^{n+1}, W_{H}^{n+1}$ and W_{L}^{n+1} are known, we discretize the equation for the velocity and energy flux getting two uncoupled linear systems wherefrom one finds

$$
\begin{align*}
& m_{H}^{*} V_{H}^{n+1}=c_{11_{H H}} V_{H}^{n} \Delta t+c_{12_{H H}} S_{H}^{n} \Delta t+\frac{p_{H}^{n}}{p_{H}^{n+1}} m_{H}^{*} V_{H}^{n}+e E \Delta t \\
& +\left(c_{11_{H L}} V_{L}^{n}+c_{12_{H L}} S_{L}^{n}\right) \frac{p_{L}^{n+1}}{p_{H}^{n+1}} \Delta t \tag{112}\\
& S_{H}^{n+1}=c_{21_{H H}} V_{H}^{n} \Delta t+c_{22_{H H}} S_{H}^{n} \Delta t+\frac{p_{H}^{n}}{p_{H}^{n+1}} S_{H}^{n}+e E G_{H}^{n+1} \Delta t \\
& \tag{113}\\
& +\left(c_{21_{H L}} V_{L}^{n}+c_{22_{H L}} S_{L}^{n}\right) \frac{p_{L}^{n+1}}{p_{H}^{n+1}} \Delta t \\
& m_{L}^{*} V_{L}^{n+1}=c_{11_{L L}} V_{L}^{n} \Delta t+c_{12_{L L}} S_{L}^{n} \Delta t+\frac{p_{L}^{n}}{p_{L}^{n+1}} m_{L}^{*} V_{L}^{n}+e E \Delta t \tag{114}\\
& \quad+\left(c_{11_{L H}} V_{H}^{n}+c_{12_{L H}} S_{H}^{n}\right) \frac{p_{H}^{n+1}}{p_{L}^{n+1}} \Delta t \\
& S_{L}^{n+1}=c_{21_{L L}} V_{L}^{n} \Delta t+c_{22_{L L}} S_{L}^{n} \Delta t+\frac{p_{L}^{n}}{p_{L}^{n+1}} S_{L}^{n}+e E G_{L}^{n+1} \Delta t \tag{115}\\
& \quad+\left(c_{21_{L H}} V_{H}^{n}+c_{22_{L H}} S_{H}^{n}\right) \frac{p_{H}^{n+1}}{p_{L}^{n+1}} \Delta t
\end{align*}
$$

The band coefficients and the deformation potentials are not given by scattering theory but they are free parameters also for the kinetic models. Their values are usually fitted against the experimental data and there are several sets of values available in the literature.

Figure 6. Velocity of the heavy and light holes as function of the electric field.

Figure 7. Average velocity as function of the electric field.

We use the physical parameters reported in table 1 . Moreover for the heavy holes we take the same values of the scattering coupling constants as in [18], that is $\Xi_{d}=5.39 \mathrm{eV}$ and $D_{t} K=$ $13.24 \times 10^{8} \mathrm{eV} \mathrm{cm}{ }^{-1}$ according to [26]; instead for the light holes we take $D_{t} K=5 \times$ $10^{8} \mathrm{eV} \mathrm{cm}^{-1}$ [24] and $\Xi_{d}=3.1 \mathrm{eV}$ [33].

The stationary solution is reached after about 3 ps . The results are plotted versus the electric field. As expected from a physical point of view, the heavy band is more populated than the light one. The ratio of the concentration between the two bands is reported in figure 5. Similarly, the average velocity of the light holes is much higher than that of the other band (see figure 6) according to the smaller effective mass. The total momentum density is given by

$$
J=p_{H} V_{H}+p_{L} V_{L}
$$

and from this an average overall hole velocity can be defined as

$$
V=\frac{J}{p_{H}+p_{L}} .
$$

V is plotted against the field in figure 7 and a good high field velocity is obtained. We note that the V is considerably higher than V_{H}. This means that calculations with the single heavy band could underestimate the overall hole current.

10. Conclusions

In this paper, we have presented a consistent closure for a hydrodynamical model for the hole transport in silicon by using the maximum entropy principle by describing the band structure with the so-called warped approximation. Both heavy and light bands are taken into account.

Under suitable scaling assumptions, we have obtained an explicit analytical expression for fluxes and production terms. Limiting energy-transport and drift-diffusion models have been deduced.

Simulations in the bulk homogeneous case are performed.
Applications to relevant bipolar devices are under current investigation by the authors.

Acknowledgments

The author acknowledges the financial support by MIUR (PRIN 2004 Problemi Matematici delle teorie cinetiche), PRA University of Catania (ex 60%), CNR (grant no 00.00128.ST74), the EU Marie Curie RTN project COMSON grant no MRTN-CT-2005-019417.

Appendix A. Numerical coefficients

In this appendix, some numerical coefficients present in the constitutive relation are collected. The definition of the coefficients J_{i} are given by

$$
\begin{aligned}
& J_{5}=\int_{S^{2} \times S^{\prime 2}} D^{-3 / 2}\left(\vartheta^{\prime}, \varphi^{\prime}\right)\left(1+3\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}\right)\left(1-\mathbf{n} \cdot \mathbf{n}^{\prime}\right) D^{-5 / 2}(\vartheta, \varphi) \mathrm{d} \Omega \mathrm{~d} \Omega^{\prime}, \\
& J_{6}=\int_{S^{2} \times S^{\prime 2}} D^{-3 / 2}\left(\vartheta^{\prime}, \varphi^{\prime}\right)\left(1+3\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}\right)\left(1-\mathbf{n} \cdot \mathbf{n}^{\prime}\right) D^{-3}(\vartheta, \varphi) \frac{T(\vartheta, \varphi)}{2} \cos ^{2} \vartheta \mathrm{~d} \Omega \mathrm{~d} \Omega^{\prime}, \\
& J_{7}=\int_{S^{2} \times S^{\prime 2}} D^{-3 / 2}\left(\vartheta^{\prime}, \varphi^{\prime}\right)\left(1+3\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}\right)\left(1-\mathbf{n} \cdot \mathbf{n}^{\prime}\right) D^{-3}(\vartheta, \varphi) \frac{T\left(\vartheta^{\prime}, \varphi^{\prime}\right)}{2} \cos \vartheta \cos \vartheta^{\prime} \mathrm{d} \Omega \mathrm{~d} \Omega^{\prime}, \\
& J_{8}=\int_{S^{2} \times S^{\prime 2}} D^{-3 / 2}\left(\vartheta^{\prime}, \varphi^{\prime}\right)\left(1+3\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}\right) D^{-2}(\vartheta, \varphi) \frac{T(\vartheta, \varphi)}{2} \cos ^{2} \vartheta \mathrm{~d} \Omega \mathrm{~d} \Omega^{\prime}, \\
& J_{9}=\int_{S^{2} \times S^{\prime 2}} D^{-3 / 2}\left(\vartheta^{\prime}, \varphi^{\prime}\right)\left(1+3\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}\right)\left(1-\mathbf{n} \cdot \mathbf{n}^{\prime}\right) D^{-5 / 2}(\vartheta, \varphi) \frac{T^{2}(\vartheta, \varphi)}{4} \cos ^{2} \vartheta \mathrm{~d} \Omega \mathrm{~d} \Omega^{\prime}, \\
& J_{10}=\int_{S^{2} \times S^{\prime 2}} D^{-3 / 2}\left(\vartheta^{\prime}, \varphi^{\prime}\right)\left(1+3\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}\right)\left(1-\mathbf{n} \cdot \mathbf{n}^{\prime}\right) D^{-5 / 2}(\vartheta, \varphi) \frac{T\left(\vartheta^{\prime}, \varphi^{\prime}\right)}{2} \\
& J_{11}=\int_{S^{2} \times S^{\prime 2}} D^{-3 / 2}\left(\vartheta^{\prime}, \varphi^{\prime}\right)\left(1+3\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)^{2}\right) D^{-3 / 2}(\vartheta, \varphi) \frac{T}{2}(\vartheta, \varphi) \\
& 4 \\
& \cos \vartheta \cos \vartheta^{\prime} \mathrm{d} \Omega \mathrm{~d} \Omega^{\prime},
\end{aligned}
$$

The numerical values are reported in table 2.

Table 3. Values of the parameters entering in the inter-band acoustic phonon scattering relations.

Parameter	$\mathrm{A}=-$ $\mathrm{B}=+$	$\mathrm{A}=+$ $\mathrm{B}=-$
I_{1}	7.68841	7.68841
I_{2}	4.43548	0.107800
I_{3}	4.36369	1.21393
I_{4}	1.45456	0.404642
I_{5}	2.56274	2.56274
I_{6}	-0.553374	-0.042758
I_{7}	3.19346	2.66397
I_{8}	5.97556	16.9617

The definition of the coefficients I_{j} are given by

$$
\begin{aligned}
& I_{1}=\int_{S^{2} \times S^{\prime 2}} D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right) D_{A}^{-3 / 2}\left(\vartheta_{A}, \varphi_{A}\right)\left(3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)^{2}\right) \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& I_{2}=\int_{S^{2} \times S^{2}} D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right)\left(3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)^{2}\right)\left(1-\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) D_{A}^{-5 / 2}\left(\vartheta_{A}, \varphi_{A}\right) \frac{T_{A}\left(\vartheta_{A}, \varphi_{A}\right)}{2} \\
& \times \frac{T_{B}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right)}{2} \cos \vartheta_{A} \cos \vartheta_{B}^{\prime} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& I_{3}=\int_{S^{2} \times S^{2}} D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right)\left(3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)^{2}\right)\left(1-\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) D_{A}^{-5 / 2}\left(\vartheta_{A}, \varphi_{A}\right) \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& I_{4}=\int_{S^{2} \times S^{2}} D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right)\left(3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)^{2}\right)\left(1-\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) D_{A}^{-3}\left(\vartheta_{A}, \varphi_{A}\right) \\
& \times \frac{T_{A}\left(\vartheta_{A}, \varphi_{A}\right)}{2} \cos ^{2} \vartheta_{A} \mathrm{~d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& I_{5}=\int_{S^{2} \times S^{2}} D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right)\left(3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}^{\prime}\right)^{2}\right) D_{A}^{-2}\left(\vartheta_{A}, \varphi_{A}\right) \frac{T_{A}\left(\vartheta_{A}, \varphi_{A}\right)}{2} \cos ^{2} \vartheta_{A} \mathrm{~d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& I_{6}=\int_{S^{2} \times S^{2}} D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right)\left(3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)^{2}\right)\left(1-\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) D_{A}^{-3}\left(\vartheta_{A}, \varphi_{A}\right) \\
& \times \frac{T_{B}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right)}{2} \cos \vartheta_{A} \cos \vartheta_{B}^{\prime} \mathrm{d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& I_{7}=\int_{S^{2} \times S^{2}} D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right)\left(3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right)^{2}\right)\left(1-\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}{ }^{\prime}\right) D_{A}^{-5 / 2}\left(\vartheta_{A}, \varphi_{A}\right) \\
& \times \frac{T_{A}^{2}\left(\vartheta_{A}, \varphi_{A}\right)}{4} \cos ^{2} \vartheta_{A} \mathrm{~d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime}, \\
& I_{8}=\int_{S^{2} \times S^{2}} D_{B}^{-3 / 2}\left(\vartheta_{B}^{\prime}, \varphi_{B}^{\prime}\right)\left(3-3\left(\mathbf{n}_{\mathbf{A}} \cdot \mathbf{n}_{\mathbf{B}}^{\prime}\right)^{2}\right) D_{A}^{-3 / 2}\left(\vartheta_{A}, \varphi_{A}\right) \frac{T_{A}^{2}\left(\vartheta_{A}, \varphi_{A}\right)}{4} \cos ^{2} \vartheta_{A} \mathrm{~d} \Omega_{A} \mathrm{~d} \Omega_{B}^{\prime} .
\end{aligned}
$$

The numerical values are reported in table 3 .

References

[1] Markowich P, Ringhofer C A and Schmeiser C 1990 Semiconductor Equations (Wien: Springer)
[2] Jerome J W 1996 Analysis of Charge Transport (Berlin: Springer)
[3] Jüngel A 2001 Quasi-Hydrodynamic Semiconductor Equations (Basle: Birkhauser)
[4] Blotekjaer K 1970 Transport equations for electron in two-valley semiconductors IEEE Trans. Electron Devices ED-17 38-47
[5] Baccarani G and Wordeman M R 1982 An investigation on steady-state velocity overshoot in silicon Solid-State Electron. 29 970-7
[6] Anile A M, Mascali G and Romano V 2003 Recent developments in hydrodynamical modeling of semiconductors Mathematical Problems in Semiconductor Physics Lecture Notes in Mathematics vol 1832) (Berlin: Springer) pp 1-54
[7] Stratton R 1962 Diffusion of hot and cold electrons in semiconductor barriers Phys. Rev. 126 2002-14
[8] Chen D, Kan E C, Ravaioli U, Shu C-W and Dutton R 1992 An improved energy-transport model including nonparabolicity and non-Maxwellian distribution effects IEEE Electron Device Lett. 13 26-8
[9] Lyumkis E, Polsky B, Shir A and Visocky P 1992 Transient semiconductor device simulation including energy balance equation COMPEL 11 311-25
[10] Ben Abdallah N, Degond P and Genieys S 1996 An energy-transport model for semiconductors derived from the Boltzmann equation J. Stat. Phys. 84 205-31
[11] Ben Abdallah N and Degond P 1996 On a hierarchy of macroscopic models for semiconductors J. Math. Phys. 37 3306-33
[12] Lundstrom M and Guo J 2006 Nanoscale Transistor: Device Physics, Modeling, and Simulation (New York: Springer) at press
[13] Hänsch W 1991 The Drift-diffusion Equation and Its Applications in MOSFET Modeling (Wien: Springer)
[14] Selberherr S 1984 Analysis and Simulation of Semiconductor Devices (New York: Springer)
[15] Anile A M and Romano V 1999 Non parabolic band transport in semiconductors: closure of the moment equations Contin. Mech. Thermodyn. 11 307-25
[16] Romano V 2000 Non parabolic band transport in semiconductors: closure of the production terms in the moment equations Contin. Mech. Thermodyn. 12 31-51
[17] Mascali G and Romano V 2002 Hydrodynamical model of charge transport in GaAs based on the maximum entropy principle Contin. Mech. Thermodyn. 14 405-23
[18] Mascali G, Sellier J M and Romano V 2005 MEP parabolic hydrodynamical model for holes in silicon semiconductors II Nuovo Cimento 120B 197-215
[19] González P, Carrillo J A and Gámiz F 2006 Deterministic Numerical Simulation of 1d kinetic descriptions of bipolar electron devices Scientific Computing in Electrical Engineering (Series: Mathematics in Industry Subseries) The European Consortium for Mathematics in Industry vol 9 ed A M Anile, G Ali and G Mascali (Berlin: Springer) pp 339-44
[20] Liotta S F and Mascali G 2006 A hydrodynamical model for silicon bipolar devices 'WASCOM 2005'—13th Conf. on Waves and Stability in Continuous Media (Singapore: World Scientific) pp 322-7
[21] Baranskii P I, Buda I S, Dakhovskii I V and Kolomets V V 1977 Electric and Galvanometric Phenomena in Anisotropic Semiconductors (Kiev: Naukova dumka)
[22] Samoilovich A G, Korenblit I Ya, Dakhovskii I V and Iskra V D 1961 DAN SSSR 139355
[23] Ashcroft N W and Mermin N D 1976 Solid State Physics International Edition (Philadelphia: Sounders College Publishing)
[24] Jacoboni C and Reggiani L 1983 The Monte Carlo method for the solution of charge transport in semiconductors with application to covalent materials Rev. Mod. Phys. 55 645-705
[25] Jacoboni C and Lugli P 1989 The Monte Carlo Method for Semiconductor Device Simulation (New York: Springer)
[26] Fischetti M V and Laux S E 1996 Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys J. Appl. Phys. 80 2234-52
[27] Anile A M and Muscato O 1995 Improved hydrodynamical model for carrier transport in semiconductors Phys. Rev. B 51 16728-40
[28] Jaynes E T 1957 Information theory and Statistical Mechanics Phys. Rev. 106 620-30
[29] Müller I and Ruggeri T 1998 Rational Extended Thermodynamics (Berlin: Springer)
[30] Jou D, Casas-Vazquez J and Lebon G 1993 Extended Irreversible Thermodynamics (Berlin: Springer)
[31] Levermore C D 1996 Moment closure hierarchies for kinetic theories J. Stat. Phys 83 331-407
[32] Romano V 2001 Nonparabolic band hydrodynamical model of silicon semiconductors and simulation of electron devices Math. Methods Appl. Sci. 24 439-71
[33] Takeda K, Taguchi A and Sakata M 1983 Valence-band parameters and hole mobility of Ge-Si alloys-theory J. Phys. C: Solid State Phys. 16 2237-49

[^0]: ${ }^{1}$ Einstein summation over repeated letters is understood.

